Patents by Inventor John Zevenbergen

John Zevenbergen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190193952
    Abstract: Stations for deployment, recharging and/or maintenance of a plurality of unmanned aerial vehicles (UAVs) are disclosed herein. Such deployment stations can be implemented in a container that includes a robotic arm and a conveyor system. The robotic arm can secure a UAV hovering outside the station, move the UAV inside the station, and transfer the UAV to the conveyor. The conveyor can couple to and move multiple UAVs. Further, charging systems may be integrated in such deployment stations to charge UAVs when coupled to and moving along the conveyer. Further, process pieces may be utilized to simplify mechanical and electrical interfacing between a UAV, the robotic arm, the conveyor, the charging system and/or other systems at the UAV station.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: John Zevenbergen, Robert Holmberg
  • Publication number: 20190030717
    Abstract: Systems and methods are provided for specifying safety rules for robotic devices. A computing device can determine information about any actors present within a predetermined area of an environment. The computing device can determine a safety classification for the predetermined area based on the information. The safety classification can include: a low safety classification if the information indicates zero actors are present within the predetermined area, a medium safety classification if the information indicates any actors are present within the predetermined area all are of a predetermined first type, and a high safety classification if the information indicates at least one actor present within the predetermined area is of a predetermined second type. After determining the safety classification for the predetermined area, the computing device can provide a safety rule for operating within the predetermined area to a robotic device operating in the environment.
    Type: Application
    Filed: September 17, 2018
    Publication date: January 31, 2019
    Inventors: Ethan Rublee, John Zevenbergen
  • Patent number: 10122995
    Abstract: An example method involves receiving, from at least one camera located in an environment, a plurality of images captured during a first time interval. The method also involves selecting one or more of the plurality of images having a movable platform supporting one or more objects. The method further involves generating a three-dimensional model of the movable platform supporting the one or more objects. The method yet further involves updating the three-dimensional model based on one or more images captured during a second time interval. The method still further involves presenting the three-dimensional model via a display of a user interface, and providing an option to view a history of the three-dimensional model such that the three-dimensional model remains in a fixed position on the display during a viewing of the history.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: November 6, 2018
    Assignee: X Development LLC
    Inventors: Ethan Rublee, John Zevenbergen
  • Patent number: 10087000
    Abstract: Example pallet-conveyor systems may include a conveyor system configured with a delivery track arranged to move pallets to a delivery area, a recirculation loop, and a diverter mechanism. The system may include a computing system that selects an item for the recirculation loop based on future demand and causes a robotic device to maintain pallets of the selected item in the recirculation loop. The computing system may further receive an item request and determine that a requested item is available from the recirculation loop and responsively cause the diverter mechanism to divert the requested item from the recirculation loop to the delivery track. The computing system may also cause robotic devices to obtain and load pallets of remaining requested items onto the conveyer system for the delivery area, and cause pickers to remove one or more items from pallets at the delivery area in order to fulfill the item request.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: October 2, 2018
    Assignee: X Development LLC
    Inventor: John Zevenbergen
  • Patent number: 10081106
    Abstract: Systems and methods are provided for specifying safety rules for robotic devices. A computing device can determine information about any actors present within a predetermined area of an environment. The computing device can determine a safety classification for the predetermined area based on the information. The safety classification can include: a low safety classification if the information indicates zero actors are present within the predetermined area, a medium safety classification if the information indicates any actors are present within the predetermined area all are of a predetermined first type, and a high safety classification if the information indicates at least one actor present within the predetermined area is of a predetermined second type. After determining the safety classification for the predetermined area, the computing device can provide a safety rule for operating within the predetermined area to a robotic device operating in the environment.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: September 25, 2018
    Assignee: X DEVELOPMENT LLC
    Inventors: Ethan Rublee, John Zevenbergen
  • Publication number: 20180243904
    Abstract: Example embodiments may relate to methods and systems for selecting a grasp point on an object. In particular, a robotic manipulator may identify characteristics of a physical object within a physical environment. Based on the identified characteristics, the robotic manipulator may determine potential grasp points on the physical object corresponding to points at which a gripper attached to the robotic manipulator is operable to grip the physical object. Subsequently, the robotic manipulator may determine a motion path for the gripper to follow in order to move the physical object to a drop-off location for the physical object and then select a grasp point, from the potential grasp points, based on the determined motion path. After selecting the grasp point, the robotic manipulator may grip the physical object at the selected grasp point with the gripper and move the physical object through the determined motion path to the drop-off location.
    Type: Application
    Filed: May 1, 2018
    Publication date: August 30, 2018
    Inventors: Gary Bradski, Steve Croft, Kurt Konolige, Ethan Rublee, Troy Straszheim, John Zevenbergen, Stefan Hinterstoisser, Hauke Strasdat
  • Patent number: 10007266
    Abstract: Example implementations may relate to a mobile robotic device that is operable to detect pallets using a distance sensor. According to these implementations, the robotic device causes the distance sensor to scan a horizontal coverage plane in an environment of the robotic device. Then, the robotic device receives from the distance sensor, sensor data indicative of the horizontal coverage plane. The robotic device compares the sensor data to a pallet identification signature. Based on the comparison, the robotic device detects a pallet located in the environment. Further, based on the sensor data, the robotic device determines a location and an orientation of the detected pallet.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: June 26, 2018
    Assignee: X Development LLC
    Inventors: Mark Fischer, John Zevenbergen
  • Patent number: 9987746
    Abstract: Example embodiments may relate to methods and systems for selecting a grasp point on an object. In particular, a robotic manipulator may identify characteristics of a physical object within a physical environment. Based on the identified characteristics, the robotic manipulator may determine potential grasp points on the physical object corresponding to points at which a gripper attached to the robotic manipulator is operable to grip the physical object. Subsequently, the robotic manipulator may determine a motion path for the gripper to follow in order to move the physical object to a drop-off location for the physical object and then select a grasp point, from the potential grasp points, based on the determined motion path. After selecting the grasp point, the robotic manipulator may grip the physical object at the selected grasp point with the gripper and move the physical object through the determined motion path to the drop-off location.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: June 5, 2018
    Assignee: X Development LLC
    Inventors: Gary Bradski, Kurt Konolige, Ethan Rublee, Troy Straszheim, Hauke Strasdat, Stefan Hinterstoisser, Steve Croft, John Zevenbergen
  • Publication number: 20180118462
    Abstract: Example pallet-conveyor systems may include a conveyor system configured with a delivery track arranged to move pallets to a delivery area, a recirculation loop, and a diverter mechanism. The system may include a computing system that selects an item for the recirculation loop based on future demand and causes a robotic device to maintain pallets of the selected item in the recirculation loop. The computing system may further receive an item request and determine that a requested item is available from the recirculation loop and responsively cause the diverter mechanism to divert the requested item from the recirculation loop to the delivery track. The computing system may also cause robotic devices to obtain and load pallets of remaining requested items onto the conveyer system for the delivery area, and cause pickers to remove one or more items from pallets at the delivery area in order to fulfill the item request.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 3, 2018
    Inventor: John Zevenbergen
  • Patent number: 9927815
    Abstract: Example systems and methods may provide for a heterogeneous fleet of robotic devices for collaborative object processing in an environment, such as a warehouse. An example system includes a plurality of mobile robotic devices configured to transport one or more objects within an environment, a fixed robotic manipulator positioned within the environment that is configured to manipulate one or more objects within an area of reach of the fixed robotic manipulator, and a control system. The control system may be configured to cause one or more of the plurality of mobile robotic devices to deliver at least one object to at least one location within the area of reach of the fixed robotic manipulator, and to cause the fixed robotic manipulator to distribute the at least one object to a different one or more of the plurality of mobile robotic devices for delivery to one or more other locations within the environment.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: March 27, 2018
    Assignee: X Development LLC
    Inventors: Stefan Nusser, Troy Straszheim, John Zevenbergen, Ethan Rublee
  • Publication number: 20180081369
    Abstract: Example implementations may relate to a mobile robotic device that is operable to detect pallets using a distance sensor. According to these implementations, the robotic device causes the distance sensor to scan a horizontal coverage plane in an environment of the robotic device. Then, the robotic device receives from the distance sensor, sensor data indicative of the horizontal coverage plane. The robotic device compares the sensor data to a pallet identification signature. Based on the comparison, the robotic device detects a pallet located in the environment. Further, based on the sensor data, the robotic device determines a location and an orientation of the detected pallet.
    Type: Application
    Filed: June 21, 2017
    Publication date: March 22, 2018
    Inventors: Mark Fischer, John Zevenbergen
  • Publication number: 20180084242
    Abstract: An example method involves receiving, from at least one camera located in an environment, a plurality of images captured during a first time interval. The method also involves selecting one or more of the plurality of images having a movable platform supporting one or more objects. The method further involves generating a three-dimensional model of the movable platform supporting the one or more objects. The method yet further involves updating the three-dimensional model based on one or more images captured during a second time interval. The method still further involves presenting the three-dimensional model via a display of a user interface, and providing an option to view a history of the three-dimensional model such that the three-dimensional model remains in a fixed position on the display during a viewing of the history.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 22, 2018
    Inventors: Ethan Rublee, John Zevenbergen
  • Publication number: 20180065805
    Abstract: Example pallet-conveyor systems may include a conveyor system configured with a delivery track arranged to move pallets to a delivery area, a recirculation loop, and a diverter mechanism. The system may include a computing system that selects an item for the recirculation loop based on future demand and causes a robotic device to maintain pallets of the selected item in the recirculation loop. The computing system may further receive an item request and determine that a requested item is available from the recirculation loop and responsively cause the diverter mechanism to divert the requested item from the recirculation loop to the delivery track. The computing system may also cause robotic devices to obtain and load pallets of remaining requested items onto the conveyer system for the delivery area, and cause pickers to remove one or more items from pallets at the delivery area in order to fulfill the item request.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 8, 2018
    Inventor: John Zevenbergen
  • Patent number: 9908696
    Abstract: Example pallet-conveyor systems may include a conveyor system configured with a delivery track arranged to move pallets to a delivery area, a recirculation loop, and a diverter mechanism. The system may include a computing system that selects an item for the recirculation loop based on future demand and causes a robotic device to maintain pallets of the selected item in the recirculation loop. The computing system may further receive an item request and determine that a requested item is available from the recirculation loop and responsively cause the diverter mechanism to divert the requested item from the recirculation loop to the delivery track. The computing system may also cause robotic devices to obtain and load pallets of remaining requested items onto the conveyer system for the delivery area, and cause pickers to remove one or more items from pallets at the delivery area in order to fulfill the item request.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: March 6, 2018
    Assignee: X Development LLC
    Inventor: John Zevenbergen
  • Patent number: 9878587
    Abstract: A robotic body includes a first section and a second section. The first section includes a first wheel, and the second section includes a second wheel. A coupling assembly couples the first section and the second section. The coupled first section and second section are movable together via operation of the wheels. The coupling assembly includes a housing defining an interior chamber, a spindle disposed in the interior chamber of the housing, and a bearing device disposed in the interior chamber and between the housing and the spindle. The bearing device allows the spindle to rotate inside the interior chamber and relative to the housing. The first section is coupled to the housing and the second section is coupled to the spindle. The first section rotates relative to the second section according to a rotation between the spindle and the housing.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: January 30, 2018
    Assignee: X Development LLC
    Inventor: John Zevenbergen
  • Patent number: 9868214
    Abstract: Systems and methods related to localizing mobile robotic devices are provided. A control system can receive a request for a particular mobile robotic device (PMRD) to travel between a first area and a cell area. After receiving the request, the control system can disable a presence sensor detecting objects traveling between the first area and the cell area. The control system can receive, from one or more identification sensors, sensor data identifying a mobile robotic device that has moved into the cell area based on identifiers of the mobile robotic device. The control system can verify that sensor data indicates the PMRD is in the cell area. After verifying that the PMRD is in the cell area, the control system can: disable the PMRD, enable the presence sensor, and indicate that the PMRD is disabled in the cell area.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: January 16, 2018
    Assignee: X Development LLC
    Inventor: John Zevenbergen
  • Publication number: 20170361465
    Abstract: Systems and methods related to localizing mobile robotic devices are provided. A control system can receive a request for a particular mobile robotic device (PMRD) to travel between a first area and a cell area. After receiving the request, the control system can disable a presence sensor detecting objects traveling between the first area and the cell area. The control system can receive, from one or more identification sensors, sensor data identifying a mobile robotic device that has moved into the cell area based on identifiers of the mobile robotic device. The control system can verify that sensor data indicates the PMRD is in the cell area. After verifying that the PMRD is in the cell area, the control system can: disable the PMRD, enable the presence sensor, and indicate that the PMRD is disabled in the cell area.
    Type: Application
    Filed: June 20, 2016
    Publication date: December 21, 2017
    Inventor: John Zevenbergen
  • Publication number: 20170308096
    Abstract: Example systems and methods may provide for a heterogeneous fleet of robotic devices for collaborative object processing in an environment, such as a warehouse. An example system includes a plurality of mobile robotic devices configured to transport one or more objects within an environment, a fixed robotic manipulator positioned within the environment that is configured to manipulate one or more objects within an area of reach of the fixed robotic manipulator, and a control system. The control system may be configured to cause one or more of the plurality of mobile robotic devices to deliver at least one object to at least one location within the area of reach of the fixed robotic manipulator, and to cause the fixed robotic manipulator to distribute the at least one object to a different one or more of the plurality of mobile robotic devices for delivery to one or more other locations within the environment.
    Type: Application
    Filed: July 13, 2017
    Publication date: October 26, 2017
    Inventors: Stefan Nusser, Troy Straszheim, John Zevenbergen, Ethan Rublee
  • Patent number: 9733646
    Abstract: Example systems and methods may provide for a heterogeneous fleet of robotic devices for collaborative object processing in an environment, such as a warehouse. An example system includes a plurality of mobile robotic devices configured to transport one or more objects within an environment, a fixed robotic manipulator positioned within the environment that is configured to manipulate one or more objects within an area of reach of the fixed robotic manipulator, and a control system. The control system may be configured to cause one or more of the plurality of mobile robotic devices to deliver at least one object to at least one location within the area of reach of the fixed robotic manipulator, and to cause the fixed robotic manipulator to distribute the at least one object to a different one or more of the plurality of mobile robotic devices for delivery to one or more other locations within the environment.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: August 15, 2017
    Assignee: X Development LLC
    Inventors: Stefan Nusser, Troy Straszheim, John Zevenbergen, Ethan Rublee
  • Patent number: 9715232
    Abstract: Example implementations may relate to a mobile robotic device that is operable to detect pallets using a distance sensor. According to these implementations, the robotic device causes the distance sensor to scan a horizontal coverage plane in an environment of the robotic device. Then, the robotic device receives from the distance sensor, sensor data indicative of the horizontal coverage plane. The robotic device compares the sensor data to a pallet identification signature. Based on the comparison, the robotic device detects a pallet located in the environment. Further, based on the sensor data, the robotic device determines a location and an orientation of the detected pallet.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: July 25, 2017
    Assignee: X Development LLC
    Inventors: Mark Fischer, John Zevenbergen