Patents by Inventor Jon C. Wasberg

Jon C. Wasberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10371018
    Abstract: A method, control system, and variable valve timing system are provided for controlling an actuator that can be switched into an on state and an off state with pulse width modulation. The systems and method include controls configured to determine an actual system parameter on a first time schedule and a desired system parameter on a second time schedule. On a third time schedule, a position error difference between the actual system parameter and the desired system parameter is determined. The third time schedule is configured to begin and to determine the position error difference each time that the actual system parameter is determined and each time that the desired system parameter is determined. A desired duty cycle is determined, and a duty cycle command is sent to a pulse width modulation output unit.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: August 6, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Klaus Pochner, Uwe Steinmann, Kea Hyuk Chang, Scott T Feldmann, Jon C Wasberg
  • Publication number: 20180274397
    Abstract: A method, control system, and variable valve timing system are provided for controlling an actuator that can be switched into an on state and an off state with pulse width modulation. The systems and method include controls configured to determine an actual system parameter on a first time schedule and a desired system parameter on a second time schedule. On a third time schedule, a position error difference between the actual system parameter and the desired system parameter is determined. The third time schedule is configured to begin and to determine the position error difference each time that the actual system parameter is determined and each time that the desired system parameter is determined. A desired duty cycle is determined, and a duty cycle command is sent to a pulse width modulation output unit.
    Type: Application
    Filed: March 24, 2017
    Publication date: September 27, 2018
    Inventors: Klaus Pochner, Uwe Steinmann, Kea Hyuk Chang, Scott T. Feldmann, Jon C. Wasberg
  • Patent number: 9353694
    Abstract: An engine control system of a vehicle includes a first temperature module, a second temperature module, and an exhaust gas recirculation (EGR) control module. The first temperature module determines a temperature of gas within an intake manifold of an engine. The second temperature module determines a temperature of an EGR conduit that is coupled to the intake manifold. The EGR control module reduces opening of an EGR valve when the temperature of the gas and the temperature of the conduit is greater than a predetermined temperature.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: May 31, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: B. Jerry Song, Gregory J. York, Jon C. Wasberg, Josef J. Correia, Timothy Ward Athan
  • Publication number: 20140372009
    Abstract: An engine control system of a vehicle includes a first temperature module, a second temperature module, and an exhaust gas recirculation (EGR) control module. The first temperature module determines a temperature of gas within an intake manifold of an engine. The second temperature module determines a temperature of an EGR conduit that is coupled to the intake manifold. The EGR control module reduces opening of an EGR valve when the temperature of the gas and the temperature of the conduit is greater than a predetermined temperature.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: B. Jerry Song, Gregory J. York, Jon C. Wasberg, Josef J. Correia, Timothy Ward Athan
  • Publication number: 20130268176
    Abstract: A partial pressure determination module: determines a first partial pressure of oxygen in an intake manifold of an engine based on an output of a first oxygen sensor measuring oxygen in the intake manifold; and determines a second partial pressure of oxygen in an exhaust system based on an output of a second oxygen sensor measuring oxygen in the exhaust system. A concentration determination module: determines a concentration of oxygen in the intake manifold based on the first partial pressure and an intake manifold; and determines a concentration of oxygen in the exhaust system based on the second partial pressure. A flowrate determination module determines a mass flowrate of exhaust gas recirculation (EGR) based on the concentration of oxygen in the intake manifold and the concentration of oxygen in the exhaust system. An actuator control module controls an engine operating parameter based on the mass flowrate of EGR.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 10, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: B. Jerry Song, Gregory J. York, Jon C. Wasberg, Eric M. Hall
  • Patent number: 8550055
    Abstract: A control system includes an engine mode transition module that initiates a deactivated mode to deactivate at least one cylinder. A scheduling module schedules a command to disable a spark plug at least one engine cycle after a command to disable a fuel injector for the at least one cylinder.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 8, 2013
    Inventors: Eric B. Ferch, Anthony L. Marks, Ryan Bruss, Ronald M. Wozniak, Eloy Martinez, Jon C Wasberg
  • Publication number: 20130226435
    Abstract: A system according to the principles of the present disclosure includes a volumetric efficiency adjustment module and an exhaust gas recirculation (EGR) flow adjustment module. The volumetric efficiency adjustment module adjusts an estimated volumetric efficiency of an engine based on a mass flow rate of air entering the engine. The EGR flow adjustment module selectively adjusts an estimated mass flow rate of exhaust gas passing through an EGR valve based on an amount by which the volumetric efficiency adjustment module adjusts the volumetric efficiency.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Jon C. Wasberg, Vijay Ramappan, Layne K. Wiggins, Gregory J. York, Martino Casetti
  • Patent number: 8483935
    Abstract: A method for selectively creating vacuum in a hybrid powertrain controlled by a hybrid control processor and having an engine controlled by an engine control module includes requesting a pressure differential between a first intake point and a second intake point, wherein the first intake point and the second intake point are separated by a throttle. An actual torque capacity is calculated for the engine, wherein the actual torque capacity occurs when pressure is substantially equal at the first intake point and at the second intake point. A desired torque capacity is also calculated for the engine, wherein the desired torque capacity reduces the pressure at the second intake point relative to the pressure at the first intake point, such that the requested pressure differential is created. The engine is then operated at one of the desired torque capacity and the actual torque capacity.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: July 9, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Christopher E. Whitney, William R. Cawthorne, Anthony H. Heap, Jeffrey M. Kaiser, Dennis A. Light, Jon C. Wasberg, Weixin Yan
  • Publication number: 20120065864
    Abstract: A method for selectively creating vacuum in a hybrid powertrain controlled by a hybrid control processor and having an engine controlled by an engine control module includes requesting a pressure differential between a first intake point and a second intake point, wherein the first intake point and the second intake point are separated by a throttle. An actual torque capacity is calculated for the engine, wherein the actual torque capacity occurs when pressure is substantially equal at the first intake point and at the second intake point. A desired torque capacity is also calculated for the engine, wherein the desired torque capacity reduces the pressure at the second intake point relative to the pressure at the first intake point, such that the requested pressure differential is created. The engine is then operated at one of the desired torque capacity and the actual torque capacity.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, William R. Cawthorne, Anthony H. Heap, Jeffrey M. Kaiser, Dennis A. Light, Jon C. Wasberg, Weixin Yan
  • Publication number: 20110220068
    Abstract: A control system includes an engine mode transition module that initiates a deactivated mode to deactivate at least one cylinder. A scheduling module schedules a command to disable a spark plug at least one engine cycle after a command to disable a fuel injector for the at least one cylinder.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 15, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Eric B. Ferch, Anthony L. Marks, Ryan Bruss, Ronald M. Wozniak, Eloy Martinez, Jon C. Wasberg
  • Patent number: 7748362
    Abstract: An engine control system includes an air control module, a spark control module, a torque control module, a transient detection module, and a launch torque module. The air control module controls a throttle valve of an engine based on a commanded predicted torque. The spark control module controls spark advance of the engine based on a commanded immediate torque. The torque control module increases the commanded predicted torque when a catalyst light-off (CLO) mode is active, and increases the commanded immediate torque when a driver actuates an accelerator input. The transient detection module generates a lean transient signal when an air per cylinder increase is detected while the CLO mode is active. The launch torque module generates a torque offset signal based on the lean transient signal. The torque control module increases the commanded immediate torque based on the torque offset signal.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: July 6, 2010
    Inventors: Christopher E. Whitney, Michael S. Emmorey, Jeffrey M. Kaiser, Robert C. Simon, Jr., Cheryl A. Williams, Jon C. Wasberg, Eric Ferch, Craig M. Sawdon
  • Publication number: 20090283070
    Abstract: An engine control system includes an air control module, a spark control module, a torque control module, a transient detection module, and a launch torque module. The air control module controls a throttle valve of an engine based on a commanded predicted torque. The spark control module controls spark advance of the engine based on a commanded immediate torque. The torque control module increases the commanded predicted torque when a catalyst light-off (CLO) mode is active, and increases the commanded immediate torque when a driver actuates an accelerator input. The transient detection module generates a lean transient signal when an air per cylinder increase is detected while the CLO mode is active. The launch torque module generates a torque offset signal based on the lean transient signal. The torque control module increases the commanded immediate torque based on the torque offset signal.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 19, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Michael S. Emmorey, Jeffrey M. Kaiser, Robert C. Simon, JR., Cheryl A. Williams, Jon C. Wasberg, Eric Ferch, Craig M. Sawdon