Patents by Inventor Jon E. Ness

Jon E. Ness has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9359581
    Abstract: A substantially pure Candida host cell is provided for the biotransformation of a substrate to a product wherein the host cell is characterized by a first genetic modification class that comprises one or more genetic modifications that collectively or individually disrupt at least one alcohol dehydrogenase gene in the substantially pure Candida host cell.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: June 7, 2016
    Assignee: Synthezyme LLC
    Inventors: Jon E. Ness, Jeremy Minshull
  • Patent number: 9102944
    Abstract: Provided are methods, compositions, and kits for cloning of DNA using DNA topoisomerase. The methods comprise (I) combining into a mixture (A) a first polynucleotide comprising an origin of replication, a selectable marker, two topoisomerase recognition sequences, and two nicking agent recognition sequences, each of the topoisomerase recognition sequences being within 50 nucleotides of at least one of the nicking agent recognition sequences and each of the two nicking agent recognition sequences being nicked, with (B) a sequence-specific topoisomerase and (C) a second polynucleotide having 5? hydroxyl on each end; and (II) transforming the mixture into a host organism, thereby cloning the second polynucleotide. Formation or purification of a DNA-protein adduct prior to the addition of the second polynucleotide is not required. Also provided are vector sequences to facilitate performance of the methods and methods for modifying a vector of interest to render it useful in the disclosed methods.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: August 11, 2015
    Assignee: DNA Twopointo, Inc.
    Inventors: Jon E. Ness, Jeremy S. Minshull
  • Publication number: 20150218486
    Abstract: An ?-carboxyl-?-hydroxyl fatty acid oxidized from a substantially pure Candida host cell, wherein the substantially pure Candida host cell is characterized by a first genetic modification class that comprises one or more genetic modifications that collectively or individually disrupt an alcohol dehydrogenase gene, and a second genetic modification class, wherein the second genetic modification class comprises an insertion of a first gene into the Candida host cell genome.
    Type: Application
    Filed: April 6, 2015
    Publication date: August 6, 2015
    Applicant: SYNTHEZYME LLC
    Inventors: JON E. NESS, JEREMY MINSHULL
  • Publication number: 20150094483
    Abstract: A substantially pure Candida host cell is provided for the biotransformation of a substrate to a product wherein the host cell is characterized by a first genetic modification class that comprises one or more genetic modifications that collectively or individually disrupt at least one alcohol dehydrogenase gene in the substantially pure Candida host cell.
    Type: Application
    Filed: November 19, 2013
    Publication date: April 2, 2015
    Inventors: Jon E. Ness, Jeremy Minshull
  • Patent number: 8825411
    Abstract: Methods of synthesizing oligonucleotides with high coupling efficiency (>99.5%) are provided. Methods for purification of synthetic oligonucleotides are also provided. Instrumentation configurations for oligonucleotide synthesis are also provided. Methods of designing and synthesizing polynucleotides are also provided. Polynucleotide design is optimized for subsequent assembly from shorter oligonucleotides. Modifications of phosphoramidite chemistry to improve the subsequent assembly of polynucleotides are provided. The design process also incorporates codon biases into polynucleotides that favor expression in defined hosts. Design and assembly methods are also provided for the efficient synthesis of sets of polynucleotide variants. Software to automate the design and assembly process is also provided.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: September 2, 2014
    Assignee: DNA Twopointo, Inc.
    Inventors: Sridhar Govindarajan, Jeremy S. Minshull, Jon E. Ness
  • Patent number: 8597923
    Abstract: A substantially pure Candida host cell is provided for the biotransformation of a substrate to a product wherein the host cell is characterized by a first genetic modification class that comprises one or more genetic modifications that collectively or individually disrupt at least one alcohol dehydrogenase gene in the substantially pure Candida host cell.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: December 3, 2013
    Assignee: SyntheZyme, LLC
    Inventors: Jon E. Ness, Jeremy Minshull
  • Publication number: 20130196864
    Abstract: Methods of synthesizing oligonucleotides with high coupling efficiency (>99.5%) are provided. Methods for purification of synthetic oligonucleotides are also provided. Instrumentation configurations for oligonucleotide synthesis are also provided. Methods of designing and synthesizing polynucleotides are also provided. Polynucleotide design is optimized for subsequent assembly from shorter oligonucleotides. Modifications of phosphoramidite chemistry to improve the subsequent assembly of polynucleotides are provided. The design process also incorporates codon biases into polynucleotides that favor expression in defined hosts. Design and assembly methods are also provided for the efficient synthesis of sets of polynucleotide variants. Software to automate the design and assembly process is also provided.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 1, 2013
    Applicant: DNA TWOPOINTO, INC.
    Inventors: Sridhar Govindarajan, Jeremy S. Minshull, Jon E. Ness
  • Patent number: 8377681
    Abstract: The invention provides methods employing iterative cycles of recombination and selection/screening for evolution of whole cells and organisms toward acquisition of desired properties. Examples of such properties include enhanced recombinogenicity, genome copy number, and capacity for expression and/or secretion of proteins and secondary metabolites.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: February 19, 2013
    Assignee: Codexis Mayflower Holdings, LLC
    Inventors: Stephen DelCardayre, Matthew B. Tobin, Willem P. C. Stemmer, Jon E. Ness, Jeremy S. Minshull, Phillip A. Patten, Venkiteswatan Mani Subramanian, Linda A. Castle, Claus M. Krebber, Steven H. Bass, Ying-Xin Zhang, Anthony R. Cox, Gjalt W. Huisman, Ling Yuan, Joseph A. Affholter
  • Patent number: 8323930
    Abstract: Provided are methods, compositions, and kits for molecular cloning of DNA using DNA topoisomerase. The methods comprise (I) combining into a mixture (A) a first polynucleotide, comprising an origin of replication, a selectable marker, two topoisomerase recognition sequences, and two nicking agent recognition sequences, each of the topoisomerase recognition sequences being within 50 nucleotides of at least one of the nicking agent recognition sequences and each of two nicking agent recognition sequences being nicked, with (B) a sequence-specific topoisomerase and (C) a second polynucleotide, having a 5? hydroxyl on each end; and (II) transforming the mixture into a host organism, thereby cloning the second polynucleotide. Formation or purification of a DNA-protein adduct prior to the addition of the second polynucleotide is not required. Also provided are vector sequences to facilitate performance of the methods and methods for modifying a vector of interest to render it useful in the disclosed methods.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: December 4, 2012
    Assignee: DNA Twopointo, Inc.
    Inventors: Jon E. Ness, Jeremy S. Minshull
  • Publication number: 20120252681
    Abstract: The invention provides methods employing iterative cycles of recombination and selection/screening for evolution of whole cells and organisms toward acquisition of desired properties. Examples of such properties include enhanced recombinogenicity, genome copy number, and capacity for expression and/or secretion of proteins and secondary metabolites.
    Type: Application
    Filed: December 2, 2011
    Publication date: October 4, 2012
    Applicant: CODEXIS MAYFLOWER HOLDINGS, LLC
    Inventors: Stephen del Cardayre, Matthew Tobin, Willem P.C. Stemmer, Jon E. Ness, Jeremy Minshull, Phillip Patten, Venkiteswaran Subramanian, Linda A. Castle, Claus M. Krebber, Steven H. Bass, Ying-Xin Zhang, Tony Cox, Gjalt Huisman, Ling Yuan, Joseph A. Affholter
  • Publication number: 20120040871
    Abstract: Methods of recombining nucleic acids, including homologous nucleic acids, are provided. Families of gene shuffling oligonucleotides and their use in recombination procedures, as well as polymerase and ligase mediated recombination methods are also provided.
    Type: Application
    Filed: September 23, 2011
    Publication date: February 16, 2012
    Applicant: CODEXIS MAYFLOWER HOLDINGS, LLC
    Inventors: Andreas Crameri, Willem PC Stemmer, Jeremy Minshull, Steven H. Bass, Mark Welch, Jon E. Ness, Claes Gustafsson, Phillip A Patten
  • Patent number: 8076138
    Abstract: The invention provides methods employing iterative cycles of recombination and selection/screening for evolution of whole cells and organisms toward acquisition of desired properties. Examples of such properties include enhanced recombinogenicity, genome copy number, and capacity for expression and/or secretion of proteins and secondary metabolites.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: December 13, 2011
    Assignee: Codexis Mayflower Holdings, LLC
    Inventors: Stephen DelCardayre, Matthew B. Tobin, Willem P. C. Stemmer, Jon E. Ness, Jeremy S. Minshull, Phillip A. Patten, Venkiteswatan Mani Subramanian, Linda A. Castle, Claus M. Krebber, Steven H. Bass, Ying-Xin Zhang, Anthony R. Cox, Gjalt W. Huisman, Ling Yuan, Joseph A. Affholter
  • Patent number: 8029988
    Abstract: Methods of recombining nucleic acids, including homologous nucleic acids, are provided. Families of gene shuffling oligonucleotides and their use in recombination procedures, as well as polymerase and ligase mediated recombination methods are also provided.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: October 4, 2011
    Assignee: Codexis Mayflower Holdings, LLC
    Inventors: Andreas Crameri, Willem P. C. Stemmer, Jeremy Minshull, Steven H. Bass, Mark Welch, Jon E. Ness, Claes Gustafsson, Phillip A. Patten
  • Publication number: 20110190140
    Abstract: The invention provides methods employing iterative cycles of recombination and selection/screening for evolution of whole cells and organisms toward acquisition of desired properties. Examples of such properties include enhanced recombinogenicity, genome copy number, and capacity for expression and/or secretion of proteins and secondary metabolites.
    Type: Application
    Filed: October 15, 2009
    Publication date: August 4, 2011
    Applicant: Maxygen, Inc.
    Inventors: Stephen del Cardayre, Matthew Tobin, Willem P.C. Stemmer, Jon E. Ness, Jeremy Minshull, Phillip Patten, Venkiteswatan Subramanian, Linda A. Castle, Claus M. Krebber, Steven H. Bass, Ying-Xin Zhang, Tony Cox, Gjalt Huisman, Ling Yuan, Joseph A. Affholter
  • Patent number: 7873477
    Abstract: Methods and systems for providing biological results in the form of systematically varied libraries of sequences or as data representing sequences or physical preparations of systematically varied libraries and/or selections from systematically varied libraries.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: January 18, 2011
    Assignee: Codexis Mayflower Holdings, LLC
    Inventors: Claes Gustafsson, Sridhar Govindarajan, Jeremy S. Minshull, Jon E. Ness, Robin A. Emig
  • Publication number: 20100291653
    Abstract: A substantially pure Candida host cell is provided for the biotransformation of a substrate to a product wherein the host cell is characterized by a first genetic modification class that comprises one or more genetic modifications that collectively or individually disrupt at least one alcohol dehydrogenase gene in the substantially pure Candida host cell.
    Type: Application
    Filed: May 6, 2010
    Publication date: November 18, 2010
    Inventors: Jon E. Ness, Jeremy Minshull
  • Patent number: 7805252
    Abstract: Computer systems, computer program products and methods for designing oligonucleotides are provided. A set of sequence elements is defined. Each sequence element represents an amino acid sequence segment or a nucleic acid sequence segment. The set of sequence elements collectively represent a design nucleic acid sequence. The set of sequence elements are displayed as a plurality icons in a linear or a near linear arrangement such that each respective icon in the plurality of icons uniquely represents a corresponding sequence element in the set of sequence elements. In this representation, neighboring icons in the plurality of icons represent neighboring sequence elements in the set of sequence elements. Each respective icon in the plurality of icons depicts a directional property for the corresponding sequence element in the set of sequence elements. An oligonucleotide selection module is used to identify oligonucleotides in the design nucleic acid sequence.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: September 28, 2010
    Assignee: DNA Twopointo, Inc.
    Inventors: Claes Gustafsson, Sridhar Govindarajan, Jon E. Ness, Alan Marco Villalobos, Jeremy Minshull
  • Publication number: 20100105599
    Abstract: New subtilisin homologues (both nucleic acids and proteins) are provided. Compositions which include these new proteins, recombinant cells, shuffling methods involving the new homologues, antibodies to the new homologues, and methods of using the homologues are also provided.
    Type: Application
    Filed: September 18, 2009
    Publication date: April 29, 2010
    Applicants: Novozymes A/S, Maxygen Inc.
    Inventors: Jon E. Ness, Mark Welch, Lorraine J. Giver, Joel R. Cherry, Torben V. Borchert, Jeremy S. Minshull
  • Publication number: 20090317873
    Abstract: Methods of synthesizing oligonucleotides with high coupling efficiency (>99.5%) are provided. Methods for purification of synthetic oligonucleotides are also provided. Instrumentation configurations for oligonucleotide synthesis are also provided. Methods of designing and synthesizing polynucleotides are also provided. Polynucleotide design is optimized for subsequent assembly from shorter oligonucleotides. Modifications of phosphoramidite chemistry to improve the subsequent assembly of polynucleotides are provided. The design process also incorporates codon biases into polynucleotides that favor expression in defined hosts. Design and assembly methods are also provided for the efficient synthesis of sets of polynucleotide variants. Software to automate the design and assembly process is also provided.
    Type: Application
    Filed: May 4, 2005
    Publication date: December 24, 2009
    Inventors: Sridhar Govindarajan, Nicolay V. Kulikov, Jeremy S. Minshull, Jon E. Ness
  • Patent number: 7629170
    Abstract: The invention provides methods employing iterative cycles of recombination and selection/screening for evolution of whole cells and organisms toward acquisition of desired properties. Examples of such properties include enhanced recombinogenicity, genome copy number, and capacity for expression and/or secretion of proteins and secondary metabolites.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: December 8, 2009
    Assignee: Maxygen, Inc.
    Inventors: Stephen delCardayre, Matthew B. Tobin, Willem P. C. Stemmer, Jon E. Ness, Jeremy S. Minshull, Phillip A. Patten, Venkiteswatan Mani Subramanian, Linda A. Castle, Claus M. Krebber, Steven H. Bass, Ying-Xin Zhang, Anthony R. Cox, Gjalt W. Huisman, Ling Yuan, Joseph A. Affholter