Patents by Inventor Jon Klingensmith

Jon Klingensmith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220370033
    Abstract: A system for patient cardiac imaging and tissue modeling. The system includes a patient imaging device that can acquire patient cardiac imaging data. A processor is configured to receive the cardiac imaging data. A user interface and display allow a user to interact with the cardiac imaging data. The processor includes fat identification software conducting operations to interact with a trained learning network to identify fat tissue in the cardiac imaging data and to map fat tissue onto a three-dimensional model of the heart. A preferred system uses an ultrasound imaging device as the patient imaging device. Another preferred system uses an MRI or CT image device as the patient imaging device.
    Type: Application
    Filed: April 27, 2022
    Publication date: November 24, 2022
    Inventors: Jon Klingensmith, Colin Gibbons, Michaela Kulasekara
  • Patent number: 10292676
    Abstract: Computer-implemented methods for use in improving the diagnostic quality of images, including intravascular ultrasound (IVUS) images, are disclosed. The methods include using a non-linear, probabilistic classifier algorithm to analyze a plurality of spatiotemporal features of RF backscatter and to produce a blood likelihood map or blood probability map that corresponds to the original IVUS image. The methods disclosed herein allow for visualizing both static and dynamic characteristic of a vessel either by producing a transparency modulated color overlay of the blood likelihood map without altering the underlying IVUS image or by processing the IVUS image based upon the blood likelihood map to better distinguish between static and dynamic components of the vessel.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: May 21, 2019
    Assignee: VOLCANO CORPORATON
    Inventors: Nikhil Rajguru, Vladimir Zagrodsky, David Goodwin, Jon Klingensmith, Wolf-Ekkehard Blanz, Bernhard Sturm
  • Publication number: 20140350404
    Abstract: Computer-implemented methods for use in improving the diagnostic quality of images, including intravascular ultrasound (IVUS) images, are disclosed. The methods include using a non-linear, probabilistic classifier algorithm to analyze a plurality of spatiotemporal features of RF backscatter and to produce a blood likelihood map or blood probability map that corresponds to the original IVUS image. The methods disclosed herein allow for visualizing both static and dynamic characteristic of a vessel either by producing a transparency modulated color overlay of the blood likelihood map without altering the underlying IVUS image or by processing the IVUS image based upon the blood likelihood map to better distinguish between static and dynamic components of the vessel.
    Type: Application
    Filed: December 20, 2012
    Publication date: November 27, 2014
    Applicant: Volcano Corporation
    Inventors: Nikhil Rajguru, Vladimir Zagrodsky, David Goodwin, Jon Klingensmith, Wolf-Ekkehard Blanz, Bernhard Sturm
  • Publication number: 20070201736
    Abstract: The present invention uses a radio frequency (RF) signal backscattered from vascular tissue to identify a border on a vascular image. Embodiments of the invention operate in accordance with a data gathering device connected to a computing device and a transducer via a catheter. The transducer is used to gather RF data backscattered from vascular tissue. The RF data is provided to the computing device via the data-gathering device. In one embodiment of the present invention, the computing device includes (i) a data storage device for storing tissue types and related parameters and (ii) an application. The application is used to convert the RF data into the frequency domain and to identify associated parameters. The parameters are compared to the parameters stored in the data storage device to identify the corresponding tissue type. This information is used, possibly with other border-related information, to determine a border on a vascular image.
    Type: Application
    Filed: April 12, 2007
    Publication date: August 30, 2007
    Inventors: Jon Klingensmith, Anuja Nair, Barry Kuban, D. Vince
  • Publication number: 20070100239
    Abstract: A system and method is provided for using ultrasound data backscattered from vascular tissue to estimate the transfer function of a catheter and/or substantially synchronizing the acquisition of blood-vessel data to an identifiable portion of heartbeat data. Specifically, in accordance with a first embodiment of the present invention, a computing device is electrically connected to a catheter and used to acquire RF backscattered data from a vascular structure (e.g., a blood vessel, etc.). The backscattered ultrasound data is then used, together with an algorithm, to estimate at least one transfer function. The transfer function(s) can then be used (at least in a preferred embodiment) to calculate response data for the vascular tissue (i.e., the tissue component of the backscattered ultrasound data). In a second embodiment of the present invention, an IVUS console is electrically connected to a catheter and a computing device and is used to acquire RF backscattered data from a vascular structure.
    Type: Application
    Filed: October 14, 2006
    Publication date: May 3, 2007
    Inventors: Anuja Nair, Barry Kuban, D. Vince, Jon Klingensmith
  • Publication number: 20070083111
    Abstract: A method and system is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, methods and devices for identifying information about the imaging element used to gather the backscattered data are provided in order to permit an operation console having a plurality of Virtual Histology classification trees to select the appropriate VH classification tree for analyzing data gathered using that imaging element. In order to select the appropriate VH database for analyzing data from a specific imaging catheter, it is advantageous to know information regarding the function and performance of the catheter, such as the operating frequency of the catheter and whether it is a rotational or phased-array catheter. The present invention provides a device and method for storing this information on the imaging catheter and communicating the information to the operation console.
    Type: Application
    Filed: October 12, 2005
    Publication date: April 12, 2007
    Applicant: Volcano Corporation
    Inventors: Norman Hugh Hossack, Stephen Davies, Donald Mamayek, Richard Scott Huennekens, Stephen Fry, Eric Mott, Peter Smith, Scott Brownlie, Jon Klingensmith, Richard Klosinski, Edward Oliver, Masood Ahmed, Gerald Litzza
  • Publication number: 20070071326
    Abstract: A system and method is provided for using the frequency spectrum of a radio frequency (RF) signal backscattered from vascular tissue to identify at least one border (e.g., tissue interface, etc.) on a vascular image. Embodiments of the present invention operate in accordance with a data gathering device (e.g., an intra-vascular ultrasound (IVUS) device, etc.) electrically connected to a computing device and a transducer via a catheter. The transducer is used to gather radio frequency (RF) data backscattered from vascular tissue. The RF data is then provided to (or acquired by) the computing device via the data-gathering device. In one embodiment of the present invention, the computing device includes (i) at least one data storage device (e.g., database, memory, etc.) for storing a plurality of tissue types and parameters related thereto and (ii) at least one application (e.g., a characterization application, a gradient-border application, a frequency-border application and/or an active-contour application).
    Type: Application
    Filed: June 8, 2006
    Publication date: March 29, 2007
    Inventors: Jon Klingensmith, Anuja Nair, Barry Kuban, D. Vince
  • Publication number: 20070038061
    Abstract: A method and system are disclosed for creating, in a coordinated manner, graphical images of a body including vascular features from a combination of image data sources. The method includes initially creating an angiographic image of a vessel segment. The angiographic image is, for example, either a two or three dimensional image representation. Next, a vessel image data set is acquired that is distinct from the angiographic image data. The vessel image data set comprises information acquired at a series of positions along the vessel segment. An example of such vessel image data is a set of intravascular ultrasound frames corresponding to circumferential cross-section slices taken at various positions along the vessel segment. The angiographic image and the vessel image data set are correlated by comparing a characteristic rendered independently from both the angiographic image and the vessel image data at positions along the vessel segment.
    Type: Application
    Filed: June 23, 2006
    Publication date: February 15, 2007
    Applicant: Volcano Corporation
    Inventors: Richard Huennekens, Vincent Burgess, Marja Margolis, Blair Walker, Jon Klingensmith, Nancy Pool, Randall Hanson
  • Publication number: 20060253033
    Abstract: A system and method is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, in one embodiment of the present invention, an ultrasonic device is used to acquire RF backscattered data (i.e., IVUS data) from a blood vessel. The IVUS data is then transmitted to a computing device and used to create an IVUS image. The blood vessel is then cross-sectioned and used to identify its tissue type and to create a corresponding image (i.e., histology image). A region of interest (ROI), preferably corresponding to the identified tissue type, is then identified on the histology image. The computing device, or more particularly, a characterization application operating thereon, is then adapted to identify a corresponding region on the IVUS image. To accurately match the ROI, however, it may be necessary to warp or morph the histology image to substantially fit the contour of the IVUS image.
    Type: Application
    Filed: June 1, 2006
    Publication date: November 9, 2006
    Inventors: Anuja Nair, D. Vince, Jon Klingensmith, Barry Kuban
  • Publication number: 20060241465
    Abstract: A system and method for providing a vascular image are disclosed wherein a single composite display simultaneously provides a first view of a patient including an angiogram image and a second view including an intravascular image rendered from information provided by an imaging probe mounted on a distal end of a flexible elongate member. A cursor, having a position derived from image information provided by a radiopaque marker proximate the imaging probe, is displayed within the angiogram image to correlate the position of the imaging probe to a presently displayed intravascular image and thus provide an easily discernable identification of a position within a patient corresponding to a currently displayed intravascular image. The resulting composite display simultaneously provides: an intravascular image that includes information about a vessel that is not available from an angiogram and a current location within a vessel of a source of intravascular image data from which the intravascular image is rendered.
    Type: Application
    Filed: January 11, 2006
    Publication date: October 26, 2006
    Applicant: Volcano Corporation
    Inventors: R. Huennekens, Stephen Fry, Blair Walker, Jon Klingensmith, Nancy Pool, Vincent Burgess, William Kanz
  • Publication number: 20050196026
    Abstract: A system and method is provided for using the frequency spectrum of a radio frequency (RF) signal backscattered from vascular tissue to identify at least one border (e.g., tissue interface, etc.) on a vascular image. Embodiments of the present invention operate in accordance with a data gathering device (e.g., an intra-vascular ultrasound (IVUS) device, etc.) electrically connected to a computing device and a transducer via a catheter. The transducer is used to gather radio frequency (RF) data backscattered from vascular tissue. The RF data is then provided to (or acquired by) the computing device via the data-gathering device. In one embodiment of the present invention, the computing device includes (i) at least one data storage device (e.g., database, memory, etc.) for storing a plurality of tissue types and parameters related thereto and (ii) at least one application (e.g., a characterization application, a gradient-border application, a frequency-border application and/or an active-contour application).
    Type: Application
    Filed: April 29, 2004
    Publication date: September 8, 2005
    Applicant: The Cleveland Clinic Foundation
    Inventors: Jon Klingensmith, Anuja Nair, Barry Kuban, D. Vince
  • Publication number: 20050154315
    Abstract: A system and method is provided for using ultrasound data backscattered from vascular tissue to estimate the transfer function of a catheter (including components attached thereto—e.g., IVUS console, transducer, etc.). Specifically, in accordance with a first embodiment of the present invention, a computing device is electrically connected to a catheter and used to acquire RF backscattered data from a vascular structure (e.g., a blood vessel, etc.). The backscattered ultrasound data is then used, together with an algorithm, to estimate the transfer function. The transfer function can then be used (at least in a preferred embodiment) to calculate response data for the vascular tissue (i.e., the tissue component of the backscattered ultrasound data). In a second embodiment of the present invention, an IVUS console is electrically connected to a catheter and a computing device and is used to acquire RF backscattered data from a vascular structure.
    Type: Application
    Filed: January 14, 2004
    Publication date: July 14, 2005
    Inventors: Anuja Nair, D. Vince, Jon Klingensmith, Barry Kuban