Patents by Inventor Jon R. Resar

Jon R. Resar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240065568
    Abstract: An appliance for monitoring blood flow is provided. The appliance includes a plurality of spatially separated acousteomic sensors for auscultation detection of a patient; a hardware processor and a non-transitory computer-readable medium that stores a trained computer model for modeling a function of a healthy heart for analyzing the acousteomic signals; and a transmitter that transmits the acousteomic signals from the plurality of acousteomic sensors.
    Type: Application
    Filed: December 23, 2021
    Publication date: February 29, 2024
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Andreas G. ANDREOU, Rajat MITTAL, Christos SAPSANIS, Jung Hee SEO, W. Reid THOMPSON, Jon R. RESAR
  • Patent number: 10376682
    Abstract: Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: August 13, 2019
    Assignee: The Johns Hopkins University
    Inventors: Chao-Wei Hwang, Hala J. Tomey, Jon R. Resar, Robert C. Matteson, III, George L. Coles, Jr., Jason J. Benkoski, Morgana M. Trexler
  • Publication number: 20170028181
    Abstract: Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
    Type: Application
    Filed: October 11, 2016
    Publication date: February 2, 2017
    Inventors: Chao-Wei Hwang, Hala J. Tomey, Jon R. Resar, Robert C. Matteson, III, George L. Coles, JR., Jason J. Benkoski, Morgana M. Trexler
  • Patent number: 9504586
    Abstract: Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: November 29, 2016
    Assignee: The Johns Hopkins University
    Inventors: Chao-Wei Hwang, Hala J. Tomey, Jon R. Resar, Robert C. Matteson, III, George L. Coles, Jr., Jason J. Benkoski, Morgana M. Trexler