Patents by Inventor Jon W. Hayenga

Jon W. Hayenga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10890595
    Abstract: A method for pre-positioning a coaxial sample and sheath combination includes calculating a load shape profile including a plurality of layers of substantially equal volume. The calculated load shape profile is incrementally divided into cross-sectional slices at a first set of distance coordinates along a first axis. Each cross-sectional slice transects the plurality of layers. A sample includes a number of objects residing in solution. A sample chamber is loaded with the sample by incrementally dispensing the sample in a plurality of portions along a vertical axis divided into a second set of distance coordinates proportional to the first set of distance coordinates, where each portion has a volume proportional to the cross-sectional slice at the first distance coordinate nearest in value to the second distance coordinate.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: January 12, 2021
    Assignee: VISIONGATE, INC.
    Inventors: Nathaniel Evans, Jon W. Hayenga
  • Publication number: 20190113535
    Abstract: A method for pre-positioning a coaxial sample and sheath combination includes calculating a load shape profile including a plurality of layers of substantially equal volume. The calculated load shape profile is incrementally divided into cross-sectional slices at a first set of distance coordinates along a first axis. Each cross-sectional slice transects the plurality of layers. A sample includes a number of objects residing in solution. A sample chamber is loaded with the sample by incrementally dispensing the sample in a plurality of portions along a vertical axis divided into a second set of distance coordinates proportional to the first set of distance coordinates, where each portion has a volume proportional to the cross-sectional slice at the first distance coordinate nearest in value to the second distance coordinate.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 18, 2019
    Applicant: VISIONGATE, INC.
    Inventors: Nathaniel Evans, Jon W. Hayenga
  • Patent number: 10028811
    Abstract: The system includes a reservoir for fluid; a droplet generator for creating a stream of fluid droplets from the fluid wherein the velocity of the stream of droplets is within a range of 20 meters per second to 200 meters per second and the size of the droplets is within a range of 5 microns to 200 microns. A nozzle or nozzles direct the stream of droplets to safely clean a selected tooth or teeth surface area. The specific momentum of effective fluid droplets within the stream of fluid droplets is important in safe and effective cleaning.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: July 24, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bart Gottenbos, Jozef Johannes Maria Janssen, Marinus Karel Johannes Jager, Adriaan Willem Cense, Paulus Corenlis Duineveld, Jon W. Hayenga, William E. Bryant, Martijn Jeroen Dekker
  • Patent number: 8254023
    Abstract: An object of interest is illuminated within the field of view of a microscope objective lens located to receive light passing through the object of interest. Light transmitted through the microscope objective lens impinges upon a variable power element. The variable power element is driven with respect to the microscope objective lens to scan through multiple focal planes in the object of interest. Light transmitted from the variable power element is sensed by a sensing element or array.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: August 28, 2012
    Assignee: Visiongate, Inc.
    Inventors: Mathew D. Watson, Jon W. Hayenga
  • Patent number: 8090183
    Abstract: Correcting pattern noise projection images includes acquiring a set of projection images with an optical tomography system including a processor, where each of the set of projection images is acquired at a different angle of view. A threshold is applied to each projection image produce a set of threshold images. Each threshold image may optionally be dilated to produce a set of dilated images that are summed to form an ensemble image. Each of the dilated images is processed to produce a set of binary images. The set of binary images are summed to form an ensemble mask. The ensemble image is divided by the ensemble mask to yield a background pattern noise image. Each projection image is multiplied by a scaling factor and divided by the background pattern noise to produce a quotient image that is filtered to produce a noise corrected projection image.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: January 3, 2012
    Assignee: Visiongate, Inc.
    Inventors: Michael G. Meyer, Jon W. Hayenga, Thomas M. Abbott, David E. Steinhauer
  • Patent number: 7867778
    Abstract: A method for loading a sample for imaging by an optical tomography system. A sample volume including at least one microscopic sample and a viscous fluid is coaxially loaded into a sample delivery tube. The sample volume is impelled through a focus cell into a capillary tube, where the capillary tube has a smaller crossectional area than the sample delivery tube, so that a reduced volume of the at least one microscopic sample and viscous fluid is constrained to a central region within the capillary tube.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: January 11, 2011
    Assignee: VisionGate, Inc.
    Inventors: Jon W. Hayenga, Paul R. Smargiassi
  • Publication number: 20100232664
    Abstract: Correcting pattern noise projection images includes acquiring a set of projection images with an optical tomography system including a processor, where each of the set of projection images is acquired at a different angle of view. A threshold is applied to each projection image produce a set of threshold images. Each threshold image may optionally be dilated to produce a set of dilated images that are summed to form an ensemble image. Each of the dilated images is processed to produce a set of binary images. The set of binary images are summed to form an ensemble mask. The ensemble image is divided by the ensemble mask to yield a background pattern noise image. Each projection image is multiplied by a scaling factor and divided by the background pattern noise to produce a quotient image that is filtered to produce a noise corrected projection image.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 16, 2010
    Applicant: VISIONGATE, INC.
    Inventors: Michael G. Meyer, Jon W. Hayenga, Thomas M. Abbott, David E. Steinhauer
  • Patent number: 7787112
    Abstract: An optical projection tomography system is illuminated with a light source. An object-containing tube, a portion of which is located within the region illuminated by the light source, contains an object of interest that has a feature of interest. A detector is located to receive emerging radiation from the object of interest. A lens, including optical field extension elements, is located in the optical path between the object region and the detector, such that light rays from multiple object planes in the object-containing tube simultaneously focus on the detector. The object-containing tube moves relatively to the detector and the lens operate to provide multiple views of the object region for producing an image of the feature of interest at each view.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: August 31, 2010
    Assignee: Visiongate, Inc.
    Inventors: J. Richard Rahn, Jon W. Hayenga
  • Publication number: 20100214639
    Abstract: An object of interest is illuminated within the field of view of a microscope objective lens located to receive light passing through the object of interest. Light transmitted through the microscope objective lens impinges upon a variable power element. The variable power element is driven with respect to the microscope objective lens to scan through multiple focal planes in the object of interest. Light transmitted from the variable power element is sensed by a sensing element or array.
    Type: Application
    Filed: February 23, 2009
    Publication date: August 26, 2010
    Applicant: VISIONGATE, INC.
    Inventors: Mathew D. Watson, Jon W. Hayenga
  • Patent number: 7648835
    Abstract: An integrated heat exchange system on a microfluidic card. According to one aspect of the invention, the portable microfluidic card has a heating, cooling and heat cycling system on-board such that the card can be used portably. The microfluidic card includes one or more reservoirs containing exothermic or endothermic material. Once the chemical process of the reservoir material is activated, the reservoir provides heat or cooling to specific locations of the microfluidic card. Multiple reservoirs may be included on a single card to provide varying temperatures. The assay chemicals can be moved to the various reservoirs to create a thermal cycle useful in many biological reactions, for example, Polymerase Chain Reaction (PCR) or rtPCR.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: January 19, 2010
    Assignee: Micronics, Inc.
    Inventors: Wayne L. Breidford, Christy A. Lancaster, Jon W. Hayenga, Ronald L. Bardell, Jeffrey F. Tonn, Bernhard H. Weigl
  • Patent number: 7569789
    Abstract: An apparatus and method for sorting particles in a laminar flow microfluidic channel includes a cantilevered coaxial flow injector in a microfluidic device, the cantilevered coaxial flow injector including an elongated cantilever element integrated into the microfluidic device. A coaxial channel runs through the elongated cantilever element, where coaxial channel is sized to pass particles of a predetermined size. An actuator is coupled to the elongated cantilever element, for actuating said elongated cantilever element.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: August 4, 2009
    Assignee: VisionGate, Inc.
    Inventors: Jon W. Hayenga, Alan C. Nelson
  • Publication number: 20090103792
    Abstract: An optical projection tomography system is illuminated with a light source. An object-containing tube, a portion of which is located within the region illuminated by the light source, contains an object of interest that has a feature of interest. A detector is located to receive emerging radiation from the object of interest. A lens, including optical field extension elements, is located in the optical path between the object region and the detector, such that light rays from multiple object planes in the object-containing tube simultaneously focus on the detector. The object-containing tube moves relatively to the detector and the lens operate to provide multiple views of the object region for producing an image of the feature of interest at each view.
    Type: Application
    Filed: October 22, 2007
    Publication date: April 23, 2009
    Applicant: VISIONGATE, INC.
    Inventors: J. Richard Rahn, Jon W. Hayenga
  • Publication number: 20090081771
    Abstract: An integrated heat exchange system on a microfluidic card. According to one aspect of the invention, the portable microfluidic card has a heating, cooling and heat cycling system on-board such that the card can be used portably. The microfluidic card includes one or more reservoirs containing exothermic or endothermic material. Once the chemical process of the reservoir material is activated, the reservoir provides heat or cooling to specific locations of the microfluidic card. Multiple reservoirs may be included on a single card to provide varying temperatures. The assay chemicals can be moved to the various reservoirs to create a thermal cycle useful in many biological reactions, for example, Polymerase Chain Reaction (PCR) or rtPCR.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 26, 2009
    Applicant: Micronics, Inc.
    Inventors: Wayne L. Breidford, Christy A. Lancaster, Jon W. Hayenga, Ronald L. Bardell, Jeffrey F. Tonn, Bernhard H. Weigl
  • Publication number: 20090017423
    Abstract: The system includes a reservoir for fluid; a droplet generator for creating a stream of fluid droplets from the fluid wherein the velocity of the stream of droplets is within a range of 20 meters per second to 200 meters per second and the size of the droplets is within a range of 5 microns to 200 microns. A nozzle or nozzles direct the stream of droplets to safely clean a selected tooth or teeth surface area. The specific momentum of effective fluid droplets within the stream of fluid droplets is important in safe and effective cleaning.
    Type: Application
    Filed: January 20, 2005
    Publication date: January 15, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bart Gottenbos, Jozef Johannes Maria Janssen, Marinus Karel Johannes De Jager, Adriaan Willem Cense, Paulus Cornelis Duineveld, Jon W. Hayenga, William E. Bryant, Martijn Jeroen Dekker
  • Publication number: 20080205739
    Abstract: A method for loading a sample for imaging by an optical tomography system. A sample volume including at least one microscopic sample and a viscous fluid is coaxially loaded into a sample delivery tube. The sample volume is impelled through a focus cell into a capillary tube, where the capillary tube has a smaller crossectional area than the sample delivery tube, so that a reduced volume of the at least one microscopic sample and viscous fluid is constrained to a central region within the capillary tube.
    Type: Application
    Filed: February 23, 2007
    Publication date: August 28, 2008
    Applicant: VISIONGATE, INC.
    Inventors: Jon W. Hayenga, Paul R. Smargiassi
  • Patent number: 7223371
    Abstract: Described herein is microfluidic device for joining fluids and a related method for doing the same. The device according to the present invention includes a microfluidic junction, an outlet channel, and a plurality of circuit units. A microfluidic junction is an area for converging multiple fluids. An outlet channel is capable of receiving fluid from the microfluidic junction. An outlet channel includes a first end connected with the microfluidic junction, a second end connected with a waste reservoir, and an analysis region positioned between the first end and the second end of the outlet channel. The device also includes a plurality of circuit units.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: May 29, 2007
    Assignee: Micronics, Inc.
    Inventors: Jon W. Hayenga, Bernhard H. Weigl, Ronald L. Bardell, Christopher J. Morris
  • Patent number: 6743399
    Abstract: A microfluidic device which operates without the need for an external power source. The device includes a body structure, at least one microscale channel within the structure, a port for introducing fluid into the channel, and a power source internal to the structure for propelling the fluid through the channel. Various structures are described which embody the invention.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: June 1, 2004
    Assignee: Micronics, Inc.
    Inventors: Bernhard H. Weigl, Clinton L. Williams, Jon W. Hayenga, Ronald L. Bardell, Thomas E. Schulte
  • Publication number: 20030175990
    Abstract: Described herein is microfluidic device for joining fluids and a related method for doing the same. The device according to the present invention includes a microfluidic junction, an outlet channel, and a plurality of circuit units. A microfluidic junction is an area for converging multiple fluids. An outlet channel is capable of receiving fluid from the microfluidic junction. An outlet channel includes a first end connected with the microfluidic junction, a second end connected with a waste reservoir, and an analysis region positioned between the first end and the second end of the outlet channel. The device also includes a plurality of circuit units.
    Type: Application
    Filed: February 20, 2003
    Publication date: September 18, 2003
    Inventors: Jon W. Hayenga, Bernhard H. Weigl, Ronald L. Bardell, Christopher J. Morris
  • Publication number: 20030175980
    Abstract: A microfluidic device for sorting cells is described. The device includes an input channel, a primary channel, at least two branch channels which connect with the primary channel at a junction, and a sheath injector positioned upstream from the junction. Sample solution, which may contain a population of cells, can be entered into the input channel and hydrodynamically focused into a sample ribbon. The device employs a system for directing fluid flow, and particularly the flow of the sample ribbon, into a branch channel based on a detected cell feature. The system can employ a variety of sorting techniques to change or direct the flow of cells into a particular branch channel.
    Type: Application
    Filed: February 20, 2003
    Publication date: September 18, 2003
    Inventors: Jon W. Hayenga, Bernhard H. Weigl, Ronald L. Bardell
  • Publication number: 20020160518
    Abstract: A device for promoting sedimentation within microfluidic channels which uses gravity to separate particles from fluid. Particles such as blood cells or beads are separated from a carrier fluid using gravity combined with various devices such as membranes and sonic energy in different embodiments.
    Type: Application
    Filed: April 3, 2002
    Publication date: October 31, 2002
    Inventors: Jon W. Hayenga, C. Frederick Battrell, Bernhard H. Weigl, Christopher J. Morris, Patrick Saltsman, Gerald L. Klein