Patents by Inventor Jonah Samuel Myerberg

Jonah Samuel Myerberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180154440
    Abstract: A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the base material fuses into a dense final part. If the foundation beneath the object does not shrink in a corresponding fashion, the resulting stresses throughout the object can lead to fracturing, warping or other physical damage to the object resulting in a failed fabrication. To address this issue, a variety of techniques are disclosed for substrates and build plates that contract in a manner complementary to the object during debinding and sintering.
    Type: Application
    Filed: January 11, 2018
    Publication date: June 7, 2018
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180133367
    Abstract: Systems, methods, components, and materials are disclosed for stereolithographic fabrication of three-dimensional, dense objects. A resin including a first binder, a second binder, and dispersed particles can be exposed an activation light source to cure at least one of the binders in a layer-by-layer process to form a green object including the first binder, the second binder, and the particles. A dense object, such as a metal object, a ceramic object, or a combination thereof, can be formed from the green object by thermally processing the particles and removing the first binder through a primary debinding process, removing the second binder through a secondary debinding process different from the primary debinding process.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Michael J. Tarkanian, Yet-Ming Chiang
  • Publication number: 20180134029
    Abstract: Systems, methods, and components are disclosed for controlling layer separation in stereolithographic fabrication of three-dimensional objects. Each layer of the three-dimensional object can be cured and separated in discrete portions to facilitate controlling forces in the layers of a three-dimensional object. For example, controlling curing and separation of layers of a three-dimensional object according to the systems, methods, and components disclosed can facilitate accurately forming the three-dimensional object from cured particle-loaded resins. More specifically, particle loading can decrease the shear strength of the cured resin and, thus, controlling the forces exerted on a given layer of a cured particle-loaded resin can be particularly useful for reducing the likelihood of deformation in a three-dimensional object including the particles. In turn, the accurately formed three-dimensional object including the particles can be densified to form a dimensionally accurate finished part.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Michael J. Tarkanian, Yet-Ming Chiang, Jay Collin Tobia, Olivia Molnar Lam
  • Publication number: 20180071825
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, a printer is configured to further fabricate an interface layer between the object and the support structure in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 15, 2018
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180050390
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, a printer is configured to further fabricate an interface layer between the object and the support structure in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: November 3, 2017
    Publication date: February 22, 2018
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 9833839
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 5, 2017
    Assignee: Desktop Metal, Inc.
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170333994
    Abstract: Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 23, 2017
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 9815118
    Abstract: Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: November 14, 2017
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297102
    Abstract: Additive fabrication systems generally use support structures to expand the available range of features and geometries in fabricated objects. For example, when a vertical shelf or cantilever extends from an object, a supplemental support structure may be required to provide a surface that this feature can be fabricated upon. This process may become more difficult when a surface requiring support is enclosed within a cavity inside an object being fabricated. Techniques are disclosed herein for fabricating supports that can be removed from within cavities in an object.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Ricardo Chin, Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297099
    Abstract: A three-dimensional printer uses a fused filament fabrication process to fabricate a net shape object from build materials that can be debound and sintered into a final part. In order to facilitate separation of the object from surrounding support structures, the three-dimensional printer is configured to deposit material between adjacent surfaces of the object and the support that inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297103
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering. Disclosed herein are interface layers suitable for manufacture with an additive manufacturing system that resist the formation of bonds between a support structure and an object during subsequent sintering processes.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297106
    Abstract: Binder jetting techniques can be used to deposit and bind metallic particles or the like in a net shape for debinding and sintering into a final part. Where support structures are required to mitigate deformation of the object during the debinding and/or sintering, an interface layer may be formed between the support structures and portions of the object in order to avoid bonding of the support structure to the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Emanuel Michael Sachs, Ricardo Fulop, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297097
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297104
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering. The support structure may be a multi-part support structure to mitigate mold lock or facilitate removal from enclosed spaces.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297100
    Abstract: Binder jetting techniques can be used to deposit and bind metallic particles or the like in a net shape for debinding and sintering into a final part. Where support structures are required to mitigate deformation of the object during the debinding and/or sintering, an interface layer may be formed between the support structures and portions of the object in order to avoid bonding of the support structure to the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Emanuel Michael Sachs, Ricardo Fulop, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297109
    Abstract: A powder bed is filled layer by layer with a sinterable powder and a liquid binder. After the liquid binder is applied, the liquid binder can be activated, e.g., by selectively curing cross-sections of the binder according to a computerized three-dimensional model of an object. In this manner, a sinterable net shape object can be formed within the powder bed layer by layer. The sinterable net shape can then be removed, debound as appropriate, and sintered into a final part.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Richard Remo Fontana, Jonah Samuel Myerberg, Ricardo Fulop, Emanuel Michael Sachs
  • Publication number: 20170297111
    Abstract: A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the base material fuses into a dense final part. If the foundation beneath the object does not shrink in a corresponding fashion, the resulting stresses throughout the object can lead to fracturing, warping or other physical damage to the object resulting in a failed fabrication. To address this issue, a variety of techniques are disclosed for substrates and build plates that contract in a manner complementary to the object during debinding and sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart, Jay Collin Tobia, Nihan Tuncer, Brian Daniel Kernan, Tomek Andrzej Brzezinski
  • Publication number: 20170297108
    Abstract: A powder bed is filled layer by layer with a powdered build material containing an activatable binder. The binder in each new layer is locally activated according to a computerized three-dimensional model of an object to fabricate, layer by layer, a sinterable net shape of the object within the powder bed. The sinterable net shape can then be removed, debound as appropriate, and sintered into a final part.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Richard Remo Fontana, Jonah Samuel Myerberg, Ricardo Fulop, Emanuel Michael Sachs
  • Publication number: 20170297098
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170252816
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. One or more contact probes may be used to detect a height and/or position of a nozzle, e.g., to zero, center, or otherwise calibrate the nozzle prior to a print, or to determine a height relative to a deposited layer of build material during fabrication.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Joseph Yosup Shim, Jonah Samuel Myerberg, Nicholas Mykulowycz, Richard Remo Fontana, Ricardo Fulop