Patents by Inventor Jonathan A. Lane

Jonathan A. Lane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190022596
    Abstract: A method is described of producing a catalyst-containing composite oxygen ion membrane and a catalyst-containing composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln1?xAx)wCr1?yByO3?? and a doped zirconia. Adding certain catalyst metals into the fuel oxidation layer not only enhances the initial oxygen flux, but also reduces the degradation rate of the oxygen flux over long-term operation. One of the possible reasons for the improved flux and stability is that the addition of the catalyst metal reduces the chemical reaction between the (Ln1?xAx)wCr1?yByO3?? and the zirconia phases during membrane fabrication and operation, as indicated by the X-ray diffraction results.
    Type: Application
    Filed: March 2, 2017
    Publication date: January 24, 2019
    Inventors: Zigui Lu, Yunxiagn Lu, Gervase Maxwell Christie, Jonathan A. Lane, Pawel J. Plonczak, Joseph M. Corpus
  • Publication number: 20180327386
    Abstract: The present disclosure relates to a crystalline Forms A, B, and C of (R)—N-((4-methoxy-6-methyl-2-oxo-1,2-di-hydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide, each of which are useful as modulators the activity of histone methyl modifying enzymes. The present disclosure also provides pharmaceutically acceptable compositions comprising the crystalline forms and methods of using said compositions in the treatment of various disorders.
    Type: Application
    Filed: August 25, 2016
    Publication date: November 15, 2018
    Applicant: Constellation Pharmaceuticals, Inc.
    Inventors: Brian K. Albrecht, Alisha Arrigo, Donald Corson, Victor S. Gehling, Bruno Patrice Haché, Jean-Christophe Harmange, Jonathan Lane
  • Publication number: 20180299035
    Abstract: A porous metallic coating is provided. The coating is characterized by a combination of optimized properties that improve coating performance, as measured by heat transfer efficiency. The porous coating has optimal ranges for properties such as porosity, particle size and thickness, and has particular applicability in boiling heat transfer applications as part of an air separations unit. The porous coatings are derived from slurry-based formulations that include a mixture of metallic particles, a binder and a solvent.
    Type: Application
    Filed: June 21, 2018
    Publication date: October 18, 2018
    Inventors: Zigui Lu, Sang Muk Kwark, Joseph M. Corpus, Jonathan A. Lane, David P. Potempa, Maulik R. Shelat
  • Patent number: 10047880
    Abstract: A porous metallic coating is provided. The coating is characterized by a combination of optimized properties that improve coating performance, as measured by heat transfer efficiency. The porous coating has optimal ranges for properties such as porosity, particle size and thickness, and has particular applicability in boiling heat transfer applications as part of an air separations unit. The porous coatings are derived from slurry-based formulations that include a mixture of metallic particles, a binder and a solvent.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: August 14, 2018
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Zigui Lu, Sang Muk Kwark, Joseph M. Corpus, Jonathan A. Lane, David P. Potempa, Maulik R. Shelat
  • Patent number: 9789445
    Abstract: A composite oxygen ion transport membrane having a dense layer, a porous support layer, an optional intermediate porous layer located between the porous support layer and the dense layer and an optional surface exchange layer, overlying the dense layer. The dense layer has electronic and ionic phases. The ionic phase is composed of scandia doped, yttrium or cerium stabilized zirconia. The electronic phase is composed of a metallic oxide containing lanthanum, strontium, chromium, iron and cobalt. The porous support layer is composed of zirconia partially stabilized with yttrium, scandium, aluminum or cerium or mixtures thereof. The intermediate porous layer, if used, contains the same ionic and electronic phases as the dense layer. The surface exchange layer is formed of an electronic phase of a metallic oxide of lanthanum and strontium that also contains chromium, iron and cobalt and an ionic phase of scandia doped zirconia stabilized with yttrium or cerium.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: October 17, 2017
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Jonathan A. Lane, Zigui Lu, Pawel J. Plonczak
  • Publication number: 20170108148
    Abstract: A porous metallic coating is provided. The coating is characterized by a combination of optimized properties that improve coating performance, as measured by heat transfer efficiency. The porous coating has optimal ranges for properties such as porosity, particle size and thickness, and has particular applicability in boiling heat transfer applications as part of an air separations unit. The porous coatings are derived from slurry-based formulations that include a mixture of metallic particles, a binder and a solvent.
    Type: Application
    Filed: October 15, 2015
    Publication date: April 20, 2017
    Inventors: ZIGUI LU, SANG MUK KWARK, JOSEPH M. CORPUS, JONATHAN A. LANE, DAVID P. POTEMPA, MAULIK R. SHELAT
  • Patent number: 9561476
    Abstract: A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a microstructure exhibiting substantially uniform pore size distribution as a result of using PMMA pore forming materials or a bi-modal particle size distribution of the porous support layer materials. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: February 7, 2017
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Jonathan A. Lane, Jamie R. Wilson, Gervase Maxwell Christie, Nathalie Petigny, Christos Sarantopoulos
  • Publication number: 20160375411
    Abstract: A dual function composite oxygen transport membrane having a layered structure of mixed conducting oxygen transport materials on a first side of a porous substrate and a reforming catalyst layer on an opposing second side of the porous substrate. The layered structure of the mixed conducting oxygen transport materials contains an intermediate porous layer of mixed conducting oxygen transport materials formed on the porous substrate with a dense impervious layer of mixed conducting oxygen transport materials over the intermediate porous layer, and an optional surface exchange layer of mixed conducting oxygen transport materials over the dense impervious layer. The layered structure and the reforming catalyst layer are formed in separate steps.
    Type: Application
    Filed: June 29, 2015
    Publication date: December 29, 2016
    Inventors: Jiefeng Lin, Pawel Plonczak, Sean M. Kelly, Uttam R. Doraswami, Jonathan A. Lane
  • Patent number: 9492784
    Abstract: A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln1-xAx)wCr1-yByO3-? and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La0.8Ca0.2)0.95Cr0.5Mn0.5O3-? for the porous fuel oxidation and optional porous surface exchange layers and (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-? for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: November 15, 2016
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Gervase Maxwell Christie, Jonathan A. Lane
  • Patent number: 9486735
    Abstract: A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln1-xAx)wCr1-yByO3-? and a doped zirconia. Preferred materials are (La0.8Sr0.2)0.95Cr0.7Fe0.3O3-? for the porous fuel oxidation layer, (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-? for the dense separation layer, and (La0.8Sr0.2)0.95Cr0.3Fe0.7O3-? for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: November 8, 2016
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Zigui Lu, Pawel J. Plonczak, Jonathan A. Lane
  • Publication number: 20160096150
    Abstract: A composite oxygen ion transport membrane having a dense layer, a porous support layer, an optional intermediate porous layer located between the porous support layer and the dense layer and an optional surface exchange layer, overlying the dense layer. The dense layer has electronic and ionic phases. The ionic phase is composed of scandia doped, yttrium or cerium stabilized zirconia. The electronic phase is composed of a metallic oxide containing lanthanum, strontium, chromium, iron and cobalt. The porous support layer is composed of zirconia partially stabilized with yttrium, scandium, aluminum or cerium or mixtures thereof. The intermediate porous layer, if used, contains the same ionic and electronic phases as the dense layer. The surface exchange layer is formed of an electronic phase of a metallic oxide of lanthanum and strontium that also contains chromium, iron and cobalt and an ionic phase of scandia doped zirconia stabilized with yttrium or cerium.
    Type: Application
    Filed: September 14, 2015
    Publication date: April 7, 2016
    Inventors: Jonathan A. Lane, Zigui Lu, Pawel J. Plonczak
  • Publication number: 20160001221
    Abstract: A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln1-xAx)wCr1-yByO3-? and a doped zirconia. Preferred materials are (La0.8Sr0.2)0.95Cr0.7Fe0.3O3-? for the porous fuel oxidation layer, (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-? for the dense separation layer, and (La0.8Sr0.2)0.95Cr0.3Fe0.7O3-? for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.
    Type: Application
    Filed: September 16, 2015
    Publication date: January 7, 2016
    Inventors: Zigui Lu, Pawel J. Plonczak, Jonathan A. Lane
  • Publication number: 20150164080
    Abstract: A compound of formula I: wherein R1 is a straight or branched alkyl group containing 8 to 16 carbon atoms at the 2- or 3-position of the morpholino ring, and R2 is a straight or branched alkyl group containing 2 to 10 carbon atoms, substituted with a hydroxyl group except in the alpha-position, the sum of the carbon atoms in the groups R1 and R2 being at least 10 and preferably 10 to 20, is used to prevent biofilm formation on a surface. The compounds are particularly useful as coatings or treatments for medical devices, including stents, catheters and wire guides.
    Type: Application
    Filed: February 27, 2015
    Publication date: June 18, 2015
    Inventors: JONATHAN LANE, OLOF TORGNY SJODIN
  • Patent number: 8999365
    Abstract: A compound of formula I: wherein R1 is a straight or branched alkyl group containing 8 to 16 carbon atoms at the 2- or 3-position of the morpholino ring, and R2 is a straight or branched alkyl group containing 2 to 10 carbon atoms, substituted with a hydroxy group except in the alpha-position, the sum of the carbon atoms in the groups R1 and R2 being at least 10 and preferably 10 to 20, is used to prevent biofilm formation on a surface. The compounds are particularly useful as coatings or treatments for medical devices, including stents, catheters and wire guides.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: April 7, 2015
    Assignee: Sinclair Pharmaceuticals Limited
    Inventors: Jonathan Lane, Olof Torgny Sjodin
  • Publication number: 20140311346
    Abstract: A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln1-xAx)wCr1-yByO3-? and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La0.8Ca0.2)0.95Cr0.5Mn0.5O3-? for the porous fuel oxidation and optional porous surface exchange layers and (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-? for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 23, 2014
    Inventors: Gervase Maxwell Christie, Jonathan A. Lane
  • Patent number: 8795417
    Abstract: A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln1-xAx)wCr1-yByO3-? and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La0.8Ca0.2)0.95Cr0.5Mn0.5O3-? for the porous fuel oxidation and optional porous surface exchange layers and (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-? for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: August 5, 2014
    Assignee: Praxair Technology, Inc.
    Inventors: Gervase Maxwell Christie, Jonathan A. Lane
  • Patent number: 8407687
    Abstract: Methods, systems, and configured storage media are provided for discovering software updates, discovering if a given computer can use the software update, and then updating the computers with the software as needed automatically across a network without storing the updates on an intermediate machine within the network. Furthermore, when a failure is detected, the rollout is stopped and the software can be automatically removed from those computers that already were updated. The software update can be stored originally at an address that is inaccessible through the network firewall by intermediately uploading the software update to an update computer which is not a part of the network but has access through the firewall, which is then used to distribute the update.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: March 26, 2013
    Assignee: Lumension Security, Inc.
    Inventors: Sean Moshir, Christopher A. H. Andrew, Jack Lee Hudler, Leon Li, Jonathan M. Gordon, Michael Bacon, Noah Williams, Jonathan Lane, James J. Horton, Dan Ferguson
  • Publication number: 20130072375
    Abstract: A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a microstructure exhibiting substantially uniform pore size distribution as a result of using PMMA pore forming materials or a bi-modal particle size distribution of the porous support layer materials. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.
    Type: Application
    Filed: November 9, 2012
    Publication date: March 21, 2013
    Inventors: Jonathan A. Lane, Jamie R. Wilson, Gervase Maxwell Christie
  • Publication number: 20130072374
    Abstract: A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a microstructure exhibiting substantially uniform pore size distribution as a result of using PMMA pore forming materials or a bi-modal particle size distribution of the porous support layer materials. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.
    Type: Application
    Filed: November 8, 2012
    Publication date: March 21, 2013
    Inventors: Jonathan A. Lane, Jamie R. Wilson, Gervase Maxwell Christie
  • Publication number: 20110029966
    Abstract: Methods, systems, and configured storage media are provided for discovering software updates, discovering if a given computer can use the software update, and then updating the computers with the software as needed automatically across a network without storing the updates on an intermediate machine within the network. Furthermore, when a failure is detected, the rollout is stopped and the software can be automatically removed from those computers that already were updated. The software update can be stored originally at an address that is inaccessible through the network firewall by intermediately uploading the software update to an update computer which is not a part of the network but has access through the firewall, which is then used to distribute the update.
    Type: Application
    Filed: October 8, 2010
    Publication date: February 3, 2011
    Applicant: Lumension Security, Inc.
    Inventors: Sean Moshir, Christopher A. H. Andrew, Jack Lee Hudler, Leon Li, Jonathan M. Gordon, Michael Bacon, Noah Williams, Jonathan Lane, James J. Horton, Dan Ferguson