Patents by Inventor Jonathan C. Doan

Jonathan C. Doan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240178521
    Abstract: A method for transferring carrier ions from an auxiliary electrode to an electrode assembly through a constraint system. The electrode assembly includes a population of unit cells that each includes an electrode structure, a counter-electrode structure, and an electrically insulating separator. The electrode assembly is enclosed within a volume defined by the constraint system comprising (i) first and second primary growth constraints separated in the stacking direction, and (ii) first and second secondary growth constraints separated in the vertical direction, wherein (iii) the first and secondary growth constraints are connected to upper and lower end surface(s) of the electrode or counter-electrode structures, and comprise a plurality of apertures having porous electrically insulating material disposed therein having a porosity in the range of from 20% to 60%.
    Type: Application
    Filed: March 30, 2022
    Publication date: May 30, 2024
    Inventors: Neelam Singh, Robert S. Busacca, Jonathan C. Doan, Murali Ramasubramanian, Robert Keith Rosen
  • Publication number: 20230155189
    Abstract: A method is provided for activating a secondary battery having a negative electrode, a positive electrode, and a microporous separator between the negative and positive electrodes permeated with carrier-ion containing electrolyte, the negative electrode having anodically active silicon or an alloy thereof. The method includes transferring carrier ions from the positive electrode to the negative electrode to at least partially charge the secondary battery, and transferring carrier ions from an auxiliary electrode to the positive electrode, to provide the secondary battery with a positive electrode end of discharge voltage Vpos,eod and a negative electrode end of discharge so voltage Vneg,eod when the cell is at a predefined Vcell,eod value, the value of Vpos,eod corresponding to a voltage at which the state of charge of the positive electrode is at least 95% of its coulombic capacity and Vneg,eod is at least 0.4 V (vs Li) but less than 0.9 V (vs Li).
    Type: Application
    Filed: January 18, 2023
    Publication date: May 18, 2023
    Inventors: Christopher G. CASTLEDINE, David T. FOUCHARD, Jonathan C. DOAN, Christopher J. SPINDT, Robert M. SPOTNITZ, James D. WILCOX, Ashok LAHIRI, Murali RAMASUBRAMANIAN
  • Patent number: 11569533
    Abstract: A method is provided for activating a secondary battery having a negative electrode, a positive electrode, and a microporous separator between the negative and positive electrodes permeated with carrier-ion containing electrolyte, the negative electrode having anodically active silicon or an alloy thereof. The method includes transferring carrier ions from the positive electrode to the negative electrode to at least partially charge the secondary battery, and transferring carrier ions from an auxiliary electrode to the positive electrode, to provide the secondary battery with a positive electrode end of discharge voltage Vpos,eod and a negative electrode end of discharge voltage Vneg,eod when the cell is at a predefined Vcell,eod value, the value of Vpos,eod corresponding to a voltage at which the state of charge of the positive electrode is at least 95% of its coulombic capacity and Vneg,eod is at least 0.4 V (vs Li) but less than 0.9 V (vs Li).
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: January 31, 2023
    Assignee: ENOVIX OPERATIONS INC.
    Inventors: Christopher G. Castledine, David T. Fouchard, Jonathan C. Doan, Christopher J. Spindt, Robert M. Spotniz, James D. Wilcox, Ashok Lahiri, Murali Ramasubramanian
  • Publication number: 20220173485
    Abstract: Embodiments of secondary batteries having electrode assemblies are provided. A secondary battery can comprise an electrode assembly having a stacked series of layers, the stacked series of layers having an offset between electrode and counter-electrode layers in a unit cell member of the stacked series. A set of constraints can be provided with a primary constraint system with first and second primary growth constraints separated from each other in a longitudinal direction, and connected by at least one primary connecting member, and a secondary constraint system comprises first and second secondary growth constraints separated in a second direction and connected by members of the stacked series of layers. The primary constraint system may at least partially restrain growth of the electrode assembly in the longitudinal direction, and the secondary constraint system may at least partially restrain growth in the second direction that is orthogonal to the longitudinal direction.
    Type: Application
    Filed: February 17, 2022
    Publication date: June 2, 2022
    Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Christopher J. SPINDT, Geoffrey Matthew HO, Harrold J. RUST, III, James D. WILCOX, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Lynn VAN ERDEN, Ken S. MATSUBAYASHI, Jeremie J. DALTON, Jason Newton HOWARD, Robert Keith ROSEN, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin L. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
  • Publication number: 20220123370
    Abstract: Embodiments of a method for the preparation of an electrode assembly, include removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population in a stacking direction to form a stacked population of unit cells.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 21, 2022
    Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Harrold J. RUST, III, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Jeremie J. DALTON, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin J. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
  • Publication number: 20220115753
    Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an offset between electrode and counter-electrode layers in a unit cell. Secondary batteries can be prepared by removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population.
    Type: Application
    Filed: October 19, 2021
    Publication date: April 14, 2022
    Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Christopher J. SPINDT, Geoffrey Matthew HO, Harrold J. RUST, III, James D. WILCOX, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Lynn VAN ERDEN, Ken S. MATSUBAYASHI, Jeremie J. DALTON, Jason Newton HOWARD, Robert Keith ROSEN, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin L. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
  • Patent number: 11264680
    Abstract: Embodiments of secondary batteries having electrode assemblies are provided. A secondary battery can comprise an electrode assembly having a stacked series of layers, the stacked series of layers having an offset between electrode and counter-electrode layers in a unit cell member of the stacked series. A set of constraints can be provided with a primary constraint system with first and second primary growth constraints separated from each other in a longitudinal direction, and connected by at least one primary connecting member, and a secondary constraint system comprises first and second secondary growth constraints separated in a second direction and connected by members of the stacked series of layers. The primary constraint system may at least partially restrain growth of the electrode assembly in the longitudinal direction, and the secondary constraint system may at least partially restrain growth in the second direction that is orthogonal to the longitudinal direction.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 1, 2022
    Assignee: ENOVIX CORPORATION
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
  • Patent number: 11211639
    Abstract: Embodiments of a method for the preparation of an electrode assembly, include removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population in a stacking direction to form a stacked population of unit cells.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: December 28, 2021
    Assignee: ENOVIX CORPORATION
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Harrold J. Rust, III, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Jeremie J. Dalton, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin J. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
  • Patent number: 11128020
    Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an offset between electrode and counter-electrode layers in a unit cell. Secondary batteries can be prepared by removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: September 21, 2021
    Assignee: Enovix Corporation
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
  • Publication number: 20200381785
    Abstract: A method is provided for activating a secondary battery having a negative electrode, a positive electrode, and a microporous separator between the negative and positive electrodes permeated with carrier-ion containing electrolyte, the negative electrode having anodically active silicon or an alloy thereof. The method includes transferring carrier ions from the positive electrode to the negative electrode to at least partially charge the secondary battery, and transferring carrier ions from an auxiliary electrode to the positive electrode, to provide the secondary battery with a positive electrode end of discharge voltage Vpos,eod and a negative electrode end of discharge voltage Vneg,eod when the cell is at a predefined Vcell,eod value, the value of Vpos,eod corresponding to a voltage at which the state of charge of the positive electrode is at least 95% of its coulombic capacity and Vneg,eod is at least 0.4 V (vs Li) but less than 0.9 V (vs Li).
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Christopher G. CASTLEDINE, David T. FOUCHARD, Jonathan C. DOAN, Christopher J. SPINDT, Robert M. SPOTNIZ, James D. WILCOX, Ashok LAHIRI, Murali RAMASUBRAMANIAN
  • Publication number: 20200350633
    Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an offset between electrode and counter-electrode layers in a unit cell. Secondary batteries can be prepared by removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population.
    Type: Application
    Filed: November 15, 2018
    Publication date: November 5, 2020
    Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Christopher J. SPINDT, Geoffrey Matthew HO, Harrold J. RUST, III, James D. WILCOX, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Lynn VAN ERDEN, Ken S. MATSUBAYASHI, Jeremie J. DALTON, Jason Newton HOWARD, Robert Keith ROSEN, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin L. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
  • Publication number: 20200313146
    Abstract: Embodiments of secondary batteries having electrode assemblies are provided. A secondary battery can comprise an electrode assembly having a stacked series of layers, the stacked series of layers having an offset between electrode and counter-electrode layers in a unit cell member of the stacked series. A set of constraints can be provided with a primary constraint system with first and second primary growth constraints separated from each other in a longitudinal direction, and connected by at least one primary connecting member, and a secondary constraint system comprises first and second secondary growth constraints separated in a second direction and connected by members of the stacked series of layers. The primary constraint system may at least partially restrain growth of the electrode assembly in the longitudinal direction, and the secondary constraint system may at least partially restrain growth in the second direction that is orthogonal to the longitudinal direction.
    Type: Application
    Filed: November 15, 2018
    Publication date: October 1, 2020
    Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Christopher J. SPINDT, Geoffrey Matthew HO, Harrold J. RUST, III, James D. WILCOX, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Lynn VAN ERDEN, Ken S. MATSUBAYASHI, Jeremie J. DALTON, Jason Newton HOWARD, Robert Keith ROSEN, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin L. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
  • Patent number: 10770760
    Abstract: A method is provided for activating a secondary battery having a negative electrode, a positive electrode, and a microporous separator between the negative and positive electrodes permeated with carrier-ion containing electrolyte, the negative electrode having anodically active silicon or an alloy thereof. The method includes transferring carrier ions from the positive electrode to the negative electrode to at least partially charge the secondary battery, and transferring carrier ions from an auxiliary electrode to the positive electrode, to provide the secondary battery with a positive electrode end of discharge voltage Vpos,eod and a negative electrode end of discharge voltage Vneg,eod when the cell is at a predefined Vcell,eod value, the value of Vpos,eod corresponding to a voltage at which the state of charge of the positive electrode is at least 95% of its coulombic capacity and Vneg,eod is at least 0.4 V (vs Li) but less than 0.9 V (vs Li).
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: September 8, 2020
    Assignee: ENOVIX CORPORATION
    Inventors: Christopher G. Castledine, David T. Fouchard, Jonathan C. Doan, Christopher J. Spindt, Robert M. Spotniz, James D. Wilcox, Ashok Lahiri, Murali Ramasubramanian
  • Publication number: 20200212493
    Abstract: Embodiments of a method for the preparation of an electrode assembly, include removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population in a stacking direction to form a stacked population of unit cells.
    Type: Application
    Filed: August 6, 2019
    Publication date: July 2, 2020
    Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Harrold J. RUST, III, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Jeremie J. DALTON, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin J. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
  • Publication number: 20180151920
    Abstract: A method is provided for activating a secondary battery having a negative electrode, a positive electrode, and a microporous separator between the negative and positive electrodes permeated with carrier-ion containing electrolyte, the negative electrode having anodically active silicon or an alloy thereof. The method includes transferring carrier ions from the positive electrode to the negative electrode to at least partially charge the secondary battery, and transferring carrier ions from an auxiliary electrode to the positive electrode, to provide the secondary battery with a positive electrode end of discharge voltage Vpos,eod and a negative electrode end of discharge voltage Vneg,eod when the cell is at a predefined Vcell,eod value, the value of Vpos,eod corresponding to a voltage at which the state of charge of the positive electrode is at least 95% of its coulombic capacity and Vneg,eod is at least 0.4 V (vs Li) but less than 0.9 V (vs Li).
    Type: Application
    Filed: May 6, 2016
    Publication date: May 31, 2018
    Inventors: Christopher G. CASTLEDINE, David T. FOUCHARD, Jonathan C. DOAN, Christopher J. SPINDT, Robert M. SPOTNIZ, James D. WILCOX, Ashok LAHIRI, Murali RAMASUBRAMANIAN
  • Patent number: 7866036
    Abstract: A micromirror device and a method of making the same are disclosed herein. The micromirror device comprises a mirror plate, hinge, and post each having an electrically conductive layer. One of the hinge, mirror plate, and post further comprises an electrically insulating layer. To enable the electrical connections between the conducting layers of the hinge, mirror plate, and post, the insulating layer is patterned.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: January 11, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Robert M. Duboc, Jr.
  • Publication number: 20090039536
    Abstract: A micromirror device and a method of making the same are disclosed herein. The micromirror device comprises a mirror plate, hinge, and post each having an electrically conductive layer. One of the hinge, mirror plate, and post further comprises an electrically insulating layer. To enable the electrical connections between the conducting layers of the hinge, mirror plate, and post, the insulating layer is patterned.
    Type: Application
    Filed: October 14, 2008
    Publication date: February 12, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Robert M. Duboc, JR.
  • Patent number: 7436573
    Abstract: A micromirror device and a method of making the same are disclosed herein. The micromirror device comprises a mirror plate, hinge, and post each having an electrically conductive layer. One of the hinge, mirror plate, and post further comprises an electrically insulating layer. To enable the electrical connections between the conducting layers of the hinge, mirror plate, and post, the insulating layer is patterned.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: October 14, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Robert M. Duboc, Jr.
  • Patent number: 6960305
    Abstract: A method for making a spatial light modulator is disclosed, that comprises forming an array of micromirrors each having a hinge and a micromirror plate held via the hinge on a substrate, the micromirror plate being disposed in a plane separate from the hinge and having a hinge made of a transition metal nitride, followed by releasing the micromirrors in a spontaneous gas phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: November 1, 2005
    Assignee: Reflectivity, Inc
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Andrew G. Huibers, Jason S. Reid
  • Patent number: 6952302
    Abstract: A method and spatial light modulator are provided herein. The spatial light modulator has a higher resolution and an increased fill factor. The spatial light modulator also provides an increased contrast ratio. Furthermore, the spatial light modulator of the present invention can be operated in the absence of polarized light and that has improved electro-mechanical performance and robustness with respect to manufacturing. A method and its alternative are disclosed herein by the present invention for manufacturing the spatial light modulator.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: October 4, 2005
    Assignee: Reflectivity, Inc
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Robert M. Duboc, Jr.