Patents by Inventor Jonathan D. Bartlett

Jonathan D. Bartlett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912545
    Abstract: A wireless hoist system including a first hoist device having a first motor and a first wireless transceiver and a second hoist device having a second motor and a second wireless transceiver. The wireless hoist system includes a controller in wireless communication with the first wireless transceiver and the second wireless. The controller is configured to receive a user input and determine a first operation parameter and a second operation parameter based on the user input. The controller is also configured to provide, wirelessly, a first control signal indicative of the first operation parameter to the first hoist device and provide, wirelessly, a second control signal indicative of the second operation parameter to the second hoist device. The first hoist device operates based on the first control signal and the second hoist device operates based on the second control signal.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: February 27, 2024
    Assignee: Milwaukee Electric Tool Corporation
    Inventors: Matthew Post, Gareth Mueckl, Matthew N. Thurin, Joshua D. Widder, Timothy J. Bartlett, Patrick D. Gallagher, Jarrod P. Kotes, Karly M. Schober, Kenneth W. Wolf, Terry L. Timmons, Mallory L. Marksteiner, Jonathan L. Lambert, Ryan A. Spiering, Jeremy R. Ebner, Benjamin A. Smith, James Wekwert, Brandon L. Yahr, Troy C. Thorson, Connor P. Sprague, John E. Koller, Evan M. Glanzer, John S. Scott, William F. Chapman, III, Timothy R. Obermann
  • Patent number: 10895554
    Abstract: A conforming eddy current testing (ECT) probe for performing eddy current testing when placed on the surface of a test object. An eddy current array is fabricated on a flexible substrate. A shape metal alloy (SMA) piece is manufactured to have an original shape that conforms to the surface of the test object, and then affixed to the substrate. The SMA piece has as much or more flexibility than the substrate, so that it can be manipulated into position. Just prior to testing, the SMA piece is actuated to revert to its original shape.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: January 19, 2021
    Assignee: Southwest Research Institute
    Inventors: Jonathan D. Bartlett, Albert J. Parvin, Jr.
  • Patent number: 10739314
    Abstract: A guided wave probe for use in guided wave testing of plate structures. The probe comprises a cup having a flat or nearly flat bottom, and a guided wave sensor, such as a magnetostrictive sensor, placed in the bottom of the cup. The sensor and/or cup are coupled to the plate structure, such that ultrasonic energy from the sensor is transmitted to the cup and the plate surface. The sensor is incrementally rotated in the cup, and sensor data is acquired at each incremental position.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: August 11, 2020
    Assignee: Southwest Research Institute
    Inventors: Sergey A. Vinogradov, Adam C. Cobb, Jonathan D. Bartlett, Greg A. Bustamante, Douglas R. Earnest, Clinton J. Thwing
  • Publication number: 20200057027
    Abstract: A conforming eddy current testing (ECT) probe for performing eddy current testing when placed on the surface of a test object. An eddy current array is fabricated on a flexible substrate. A shape metal alloy (SMA) piece is manufactured to have an original shape that conforms to the surface of the test object, and then affixed to the substrate. The SMA piece has as much or more flexibility than the substrate, so that it can be manipulated into position. Just prior to testing, the SMA piece is actuated to revert to its original shape.
    Type: Application
    Filed: August 14, 2018
    Publication date: February 20, 2020
    Inventors: Jonathan D. Bartlett, Albert J. Parvin
  • Publication number: 20190187104
    Abstract: A guided wave probe for use in guided wave testing of plate structures. The probe comprises a cup having a flat or nearly flat bottom, and a guided wave sensor, such as a magnetostrictive sensor, placed in the bottom of the cup. The sensor and/or cup are coupled to the plate structure, such that ultrasonic energy from the sensor is transmitted to the cup and the plate surface. The sensor is incrementally rotated in the cup, and sensor data is acquired at each incremental position.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 20, 2019
    Inventors: Sergey A. VINOGRADOV, Adam C. COBB, Jonathan D. BARTLETT, Greg A. BUSTAMANTE, Douglas R. Earnest, Clinton J. THWING
  • Patent number: 9245163
    Abstract: A method of tracking and reporting the velocity of a hand-held paint spray gun. The object to be painted is placed in a room having one or more fiducial walls. A camera is installed on the spray gun, with its field of view toward the one or more fiducial walls. As the object is painted, the camera detects fiducials, calculates their current position, and compares current positions to previous locations to determine movement and velocity. The current velocity is compared to a stored target velocity, and audible or visible feedback is provided to the spray gun operator.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: January 26, 2016
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Clinton J. Thwing, Jonathan D. Bartlett, Erika C. Laiche, David L. Jones
  • Patent number: 8653810
    Abstract: A flexible printed circuit board (PCB) magnetostrictive (MS) sensor comprising a first direct current (DC) bias PCB layer comprising a first plurality of conductive traces, a first alternating current (AC) PCB layer disposed on the first DC bias PCB layer, the first AC PCB layer comprising a first AC coil, a pocket PCB layer disposed on the first AC PCB layer, the pocket PCB layer to receive a strip of MS material, a second AC PCB layer disposed on the pocket PCB layer, the second AC PCB layer comprising a second AC coil, and a second DC bias PCB layer disposed on the second AC PCB layer, the second DC bias PCB layer comprising a second plurality of conductive traces. The traces from the first plurality of conductive traces are electrically coupled to traces from the second plurality of conductive traces.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: February 18, 2014
    Assignee: Southwest Research Institute
    Inventors: Adam C. Cobb, Jonathan D. Bartlett, Charles E. Duffer
  • Publication number: 20130069639
    Abstract: A flexible printed circuit board (PCB) magnetostrictive (MS) sensor comprising a first direct current (DC) bias PCB layer comprising a first plurality of conductive traces, a first alternating current (AC) PCB layer disposed on the first DC bias PCB layer, the first AC PCB layer comprising a first AC coil, a pocket PCB layer disposed on the first AC PCB layer, the pocket PCB layer to receive a strip of MS material, a second AC PCB layer disposed on the pocket PCB layer, the second AC PCB layer comprising a second AC coil, and a second DC bias PCB layer disposed on the second AC PCB layer, the second DC bias PCB layer comprising a second plurality of conductive traces. The traces from the first plurality of conductive traces are electrically coupled to traces from the second plurality of conductive traces.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Applicant: Southwest Research Institute
    Inventors: Adam C. COBB, Jonathan D. BARTLETT, Charles E. DUFFER
  • Publication number: 20110216188
    Abstract: A method of tracking and reporting the velocity of a hand-held paint spray gun. The object to be painted is placed in a room having one or more fiducial walls. A camera is installed on the spray gun, with its field of view toward the one or more fiducial walls. As the object is painted, the camera detects fiducials, calculates their current position, and compares current positions to previous locations to determine movement and velocity. The current velocity is compared to a stored target velocity, and audible or visible feedback is provided to the spray gun operator.
    Type: Application
    Filed: March 8, 2010
    Publication date: September 8, 2011
    Applicant: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Clinton J. Thwing, Jonathan D. Bartlett, Erika C. Laiche, David L. Jones