Patents by Inventor Jonathan D. Edmonson

Jonathan D. Edmonson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170312502
    Abstract: Implantable medical devices automatically switch from a normal mode of operation to an exposure mode of operation and back to the normal mode of operation. The implantable medical devices may utilize hysteresis timers in order to determine if entry and/or exit criteria for the exposure mode are met. The implantable medical devices may utilize additional considerations for entry to the exposure mode such as a confirmation counter or a moving buffer of sensor values. The implantable medical devices may utilize additional considerations for exiting the exposure mode of operation and returning to the normal mode, such as total time in the exposure mode, patient position, and high voltage source charge time in the case of devices with defibrillation capabilities.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 2, 2017
    Inventors: Hyun J. Yoon, Michael L. Ellingson, Wade M. Demmer, Jonathan D. Edmonson, Matthew J. Hoffman, Ben W. Herberg, James D. Reinke, Todd J. Sheldon, Paul R. Solheim, Alison M. Seacord
  • Publication number: 20170296827
    Abstract: Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 19, 2017
    Inventors: Hyun J. Yoon, Wade M. Demmer, Matthew J. Hoffman, Robert A. Betzold, Jonathan D. Edmonson, Michael L. Ellingson, Ben W. Herberg, Juliana E. Pronovici, James D. Reinke, Todd J. Sheldon, Paul R. Solheim
  • Publication number: 20170296835
    Abstract: Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 19, 2017
    Inventors: Hyun J. Yoon, Wade M. Demmer, Matthew J. Hoffman, Robert A. Betzold, Jonathan D. Edmonson, Michael L. Ellingson, Mark K. Erickson, Ben E. Herberg, Juliana E. Pronovici, James D. Reinke, Todd J. Sheldon, Paul R. Solheim
  • Patent number: 9138584
    Abstract: An implantable medical system may include an implantable medical lead including at least one electrode and an implantable medical device. The implantable medical device comprises an electromagnetic interference (EMI) detection module that monitors for one or more particular characteristics of EMI. A control module is configured to control a therapy module to generate monophasic stimulation pulses while operating the IMD in a first operating mode. In response to detecting the condition indicative of the presence of EMI, the control module switches the IMD from the first operating mode to a second operating mode and generates at least one multiphasic stimulation pulses while operating the IMD in the second operating mode.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: September 22, 2015
    Assignee: Medtronic, Inc.
    Inventors: Christopher C. Stancer, Jonathan D. Edmonson, Michael L. Ellingson
  • Patent number: 9095721
    Abstract: An implantable medical system may include an implantable medical lead including at least one electrode and an implantable medical device. The implantable medical device comprises an electromagnetic interference (EMI) detection module that monitors for one or more particular characteristics of EMI. A control module is configured to control a therapy module to generate single stimulation pulses while operating the IMD in a first operating mode. In response to detecting the condition indicative of the presence of EMI, the control module switches the IMD from the first operating mode to a second operating mode and generates at least one group of two or more stimulation pulses in close proximity to one another in place of a single stimulation pulse while operating the IMD in the second operating mode.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 4, 2015
    Inventors: Christopher C. Stancer, Jonathan D. Edmonson, Michael L. Ellingson
  • Publication number: 20120277815
    Abstract: An implantable medical system may include an implantable medical lead including at least one electrode and an implantable medical device. The implantable medical device comprises an electromagnetic interference (EMI) detection module that monitors for one or more particular characteristics of EMI. A control module is configured to control a therapy module to generate single stimulation pulses while operating the IMD in a first operating mode. In response to detecting the condition indicative of the presence of EMI, the control module switches the IMD from the first operating mode to a second operating mode and generates at least one group of two or more stimulation pulses in close proximity to one another in place of a single stimulation pulse while operating the IMD in the second operating mode.
    Type: Application
    Filed: November 18, 2011
    Publication date: November 1, 2012
    Inventors: Christopher C. Stancer, Jonathan D. Edmonson, Michael L. Ellingson
  • Publication number: 20120277818
    Abstract: An implantable medical system may include an implantable medical lead including at least one electrode and an implantable medical device. The implantable medical device comprises an electromagnetic interference (EMI) detection module that monitors for one or more particular characteristics of EMI. A control module is configured to control a therapy module to generate monophasic stimulation pulses while operating the IMD in a first operating mode. In response to detecting the condition indicative of the presence of EMI, the control module switches the IMD from the first operating mode to a second operating mode and generates at least one multiphasic stimulation pulses while operating the IMD in the second operating mode.
    Type: Application
    Filed: November 18, 2011
    Publication date: November 1, 2012
    Inventors: Christopher C. Stancer, Jonathan D. Edmonson, Michael L. Ellingson