Patents by Inventor Jonathan D. Reid

Jonathan D. Reid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230144437
    Abstract: An apparatus and method of adjusting a plating solution are described. Suppressor is added to the plating solution until a comparison to reference data of an RDE potential taken at a first time during a constant current experiment indicates a threshold suppressor concentration is present. The amount of suppressor added to reach the threshold suppressor concentration is used to determine suppressor concentration of the solution. Another amount of suppressor is added to a new plating solution so that the new plating solution has a specific suppressor concentration. The RDE potential or slope of RDE potential change of the new plating concentration with the specific suppressor concentration taken at a second time during another constant current experiment is compared with the reference data to determine the leveler concentration. The suppressor and leveler concentrations of the original plating solution are adjusted before a semiconductor substrate is plated.
    Type: Application
    Filed: March 29, 2021
    Publication date: May 11, 2023
    Inventors: Matthew A. Rigsby, Tighe A. Spurlin, Jonathan D. Reid
  • Patent number: 11280022
    Abstract: An example electroplating method comprises feeding fresh electrolyte solution into a bath reservoir via a first inlet of the bath reservoir, and bleeding used electrolyte solution out of the bath reservoir via first outlet of the bath reservoir. Recycled electrolyte solution is received into the bath reservoir via a second inlet of the bath reservoir, and electrolyte solution is discharged from the bath reservoir via a second outlet of the bath reservoir. By-products generated by a plating cell are extracted using an extraction column. A first particle filter is disposed in a fluid pathway between the second outlet of the bath reservoir and the inlet of the plating cell, and a second particle filter is disposed in a fluid pathway between the outlet of the extraction column and the second inlet of the bath reservoir.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: March 22, 2022
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Tighe A. Spurlin, Jonathan D. Reid
  • Publication number: 20200308724
    Abstract: An example electroplating method comprises feeding fresh electrolyte solution into a bath reservoir via a first inlet of the bath reservoir, and bleeding used electrolyte solution out of the bath reservoir via first outlet of the bath reservoir. Recycled electrolyte solution is received into the bath reservoir via a second inlet of the bath reservoir, and electrolyte solution is discharged from the bath reservoir via a second outlet of the bath reservoir. By-products generated by a plating cell are extracted using an extraction column. A first particle filter is disposed in a fluid pathway between the second outlet of the bath reservoir and the inlet of the plating cell, and a second particle filter is disposed in a fluid pathway between the outlet of the extraction column and the second inlet of the bath reservoir.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Tighe A. Spurlin, Jonathan D. Reid
  • Patent number: 10711366
    Abstract: In one example, an electroplating system comprising a bath reservoir having a first inlet for feeding fresh electrolyte solution into the bath reservoir and a first outlet for bleeding used electrolyte solution out of the bath reservoir, a second inlet for receiving recycled electrolyte solution into the bath reservoir, and a second outlet for discharge of electrolyte solution from the bath reservoir. A plating cell is providing for electroplating an object, the plating cell has an inlet in direct or indirect fluid communication with the bath reservoir, and an outlet for discharge of electrolyte solution from the plating cell. An extraction column extracts by-products generated by the plating cell and has an inlet in direct or indirect fluid communication with the outlet of the plating cell, and an outlet for discharge of electrolyte solution from the extraction column.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: July 14, 2020
    Assignee: Lam Research Corporation
    Inventors: Tighe A. Spurlin, Jonathan D. Reid
  • Publication number: 20190203375
    Abstract: In one example, an electroplating system comprising a bath reservoir having a first inlet for feeding fresh electrolyte solution into the bath reservoir and a first outlet for bleeding used electrolyte solution out of the bath reservoir, a second inlet for receiving recycled electrolyte solution into the bath reservoir, and a second outlet for discharge0 of electrolyte solution from the bath reservoir. A plating cell is providing for electroplating an object, the plating cell has an inlet in direct or indirect fluid communication with the bath reservoir, and an outlet for discharge of electrolyte solution from the plating cell. An extraction column extracts by-products generated by the plating cell and has an inlet in direct or indirect fluid communication with the outlet of the plating cell, and an outlet for discharge of electrolyte solution from the extraction column.
    Type: Application
    Filed: February 12, 2018
    Publication date: July 4, 2019
    Inventors: Tighe A. Spurlin, Jonathan D. Reid
  • Patent number: 10023970
    Abstract: Methods, systems, and apparatus for plating a metal onto a work piece are described. In one aspect, an apparatus includes a plating chamber, a substrate holder, an anode chamber housing an anode, an ionically resistive ionically permeable element positioned between a substrate and the anode chamber during electroplating, an auxiliary cathode located between the anode and the ionically resistive ionically permeable element, and an insulating shield with an opening in its central region. The insulating shield may be movable with respect to the ionically resistive ionically permeable element to vary a distance between the shield and the ionically resistive ionically permeable element during electroplating.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: July 17, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Zhian He, David W. Porter, Jonathan D. Reid, Frederick D. Wilmot
  • Patent number: 10006144
    Abstract: Methods, apparatus, and systems for depositing copper and other metals are provided. In some implementations, a wafer substrate is provided to an apparatus. The wafer substrate has a surface with field regions and a feature. A copper layer is plated onto the surface of the wafer substrate. The copper layer is annealed to redistribute copper from regions of the wafer substrate to the feature. Implementations of the disclosed methods, apparatus, and systems allow for void-free bottom-up fill of features in a wafer substrate.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: June 26, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Huanfeng Zhu
  • Publication number: 20180057955
    Abstract: Methods, systems, and apparatus for plating a metal onto a work piece are described. In one aspect, an apparatus includes a plating chamber, a substrate holder, an anode chamber housing an anode, an ionically resistive ionically permeable element positioned between a substrate and the anode chamber during electroplating, an auxiliary cathode located between the anode and the ionically resistive ionically permeable element, and an insulating shield with an opening in its central region. The insulating shield may be movable with respect to the ionically resistive ionically permeable element to vary a distance between the shield and the ionically resistive ionically permeable element during electroplating.
    Type: Application
    Filed: October 18, 2017
    Publication date: March 1, 2018
    Inventors: Zhian He, David W. Porter, Jonathan D. Reid, Frederick D. Wilmot
  • Patent number: 9865501
    Abstract: Method and apparatus for reducing metal oxide surfaces to modified metal surfaces are disclosed. By exposing a metal oxide surface to a remote plasma, the metal oxide surface on a substrate can be reduced to pure metal and the metal reflowed. A remote plasma apparatus can treat the metal oxide surface as well as cool, load/unload, and move the substrate within a single standalone apparatus. The remote plasma apparatus includes a processing chamber and a controller configured to provide a substrate having a metal seed layer in a processing chamber, form a remote plasma of a reducing gas species where the remote plasma includes radicals, ions, and/or ultraviolet (UV) radiation from the reducing gas species, and expose a metal seed layer of the substrate to the remote plasma to reduce oxide of the metal seed layer to metal and to reflow the metal.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: January 9, 2018
    Assignee: Lam Research Corporation
    Inventors: Tighe A. Spurlin, George Andrew Antonelli, Natalia Doubina, James E. Duncan, Jonathan D. Reid, David Porter
  • Patent number: 9822461
    Abstract: Methods, systems, and apparatus for plating a metal onto a work piece are described. In one aspect, an apparatus includes a plating chamber, a substrate holder, an anode chamber housing an anode, an ionically resistive ionically permeable element positioned between a substrate and the anode chamber during electroplating, an auxiliary cathode located between the anode and the ionically resistive ionically permeable element, and an insulating shield with an opening in its central region. The insulating shield may be movable with respect to the ionically resistive ionically permeable element to vary a distance between the shield and the ionically resistive ionically permeable element during electroplating.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: November 21, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Zhian He, David W. Porter, Jonathan D. Reid, Frederick D. Wilmot
  • Patent number: 9816193
    Abstract: Methods, systems, and apparatus for plating a metal onto a work piece with a plating solution having a low oxygen concentration are described. In one aspect, a method includes reducing an oxygen concentration of a plating solution. The plating solution includes about 100 parts per million or less of an accelerator. After reducing the oxygen concentration of the plating solution, a wafer substrate is contacted with the plating solution in a plating cell. The oxygen concentration of the plating solution in the plating cell is about 1 part per million or less. A metal is electroplated with the plating solution onto the wafer substrate in the plating cell. After electroplating the metal onto the wafer substrate, an oxidizing strength of the plating solution is increased.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: November 14, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Kousik Ganesan, Tighe Spurlin, Jonathan D. Reid, Shantinath Ghongadi, Andrew McKerrow, James E. Duncan
  • Patent number: 9816196
    Abstract: Apparatus and methods for electroplating metal onto substrates are disclosed. The electroplating apparatus comprise an electroplating cell and at least one oxidization device. The electroplating cell comprises a cathode chamber and an anode chamber separated by a porous barrier that allows metal cations to pass through but prevents organic particles from crossing. The oxidation device (ODD) is configured to oxidize cations of the metal to be electroplated onto the substrate, which cations are present in the anolyte during electroplating. In some embodiments, the ODD is implemented as a carbon anode that removes Cu(I) from the anolyte electrochemically. In other embodiments, the ODD is implemented as an oxygenation device (OGD) or an impressed current cathodic protection anode (ICCP anode), both of which increase oxygen concentration in anolyte solutions. Methods for efficient electroplating are also disclosed.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: November 14, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Tighe A. Spurlin, Charles L. Merrill, Ludan Huang, Matthew Thorum, Lee Brogan, James E. Duncan, Frederick D. Wilmot, Robert Marshall Stowell, Steven T. Mayer, Haiying Fu, David W. Porter, Shantinath Ghongadi, Jonathan D. Reid, Hyosang S. Lee, Mark J. Willey
  • Patent number: 9816194
    Abstract: The uniformity of electroplating a metal (e.g., copper) on a semiconductor wafer is improved by using an electroplating apparatus having a flow-shaping element positioned in the proximity of the semiconductor wafer, wherein the flow-shaping element is made of a resistive material and has two types of non-communicating channels made through the resistive material, such that the electrolyte is transported towards the substrate through both types of channels. The first type of channels is not perpendicular to the plane defined by a plating face of the substrate. The second type of channels is perpendicular to the plane defined by the plating face of the substrate. The channels of the first and second type are substantially spatially segregated. In one embodiment a plurality of channels of the first type are located in the central portion of the flow-shaping element and are surrounded by a plurality of channels of the second type.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: November 14, 2017
    Assignee: Lam Research Corporation
    Inventors: Zhian He, Jian Zhou, Jingbin Feng, Jonathan D. Reid, Shantinath Ghongadi
  • Publication number: 20170096745
    Abstract: Methods, systems, and apparatus for plating a metal onto a work piece are described. In one aspect, an apparatus includes a plating chamber, a substrate holder, an anode chamber housing an anode, an ionically resistive ionically permeable element positioned between a substrate and the anode chamber during electroplating, an auxiliary cathode located between the anode and the ionically resistive ionically permeable element, and an insulating shield with an opening in its central region. The insulating shield may be movable with respect to the ionically resistive ionically permeable element to vary a distance between the shield and the ionically resistive ionically permeable element during electroplating.
    Type: Application
    Filed: November 28, 2012
    Publication date: April 6, 2017
    Inventors: Zhian HE, David W. PORTER, Jonathan D. REID, Frederick D. WILMOT
  • Patent number: 9472377
    Abstract: Method and apparatus for characterizing metal oxide reduction using metal oxide films formed in an anneal chamber are disclosed. Oxygen is provided into an anneal chamber. A substrate including a metal seed layer is exposed to the oxygen and exposed to a heated substrate support in the anneal chamber to form a metal oxide of the metal seed layer. The oxidized substrate can be stored for later use or transferred to a processing chamber for reducing the metal oxide to metal. The oxidized substrates formed in this manner provide metal oxides that are repeatable, uniform, and stable. The oxidized substrate is exposed to a reducing treatment under conditions that reduce the metal oxide to metal in the form of a film integrated with the metal seed layer.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: October 18, 2016
    Assignee: Lam Research Corporation
    Inventors: Edward C. Opocensky, Tighe A. Spurlin, Jonathan D. Reid
  • Publication number: 20160273119
    Abstract: The uniformity of electroplating a metal (e.g., copper) on a semiconductor wafer is improved by using an electroplating apparatus having a flow-shaping element positioned in the proximity of the semiconductor wafer, wherein the flow-shaping element is made of a resistive material and has two types of non-communicating channels made through the resistive material, such that the electrolyte is transported towards the substrate through both types of channels. The first type of channels is not perpendicular to the plane defined by a plating face of the substrate. The second type of channels is perpendicular to the plane defined by the plating face of the substrate. The channels of the first and second type are substantially spatially segregated. In one embodiment a plurality of channels of the first type are located in the central portion of the flow-shaping element and are surrounded by a plurality of channels of the second type.
    Type: Application
    Filed: March 19, 2015
    Publication date: September 22, 2016
    Inventors: Zhian He, Jian Zhou, Jingbin Feng, Jonathan D. Reid, Shantinath Ghongadi
  • Publication number: 20160111344
    Abstract: Method and apparatus for characterizing metal oxide reduction using metal oxide films formed in an anneal chamber are disclosed. Oxygen is provided into an anneal chamber. A substrate including a metal seed layer is exposed to the oxygen and exposed to a heated substrate support in the anneal chamber to form a metal oxide of the metal seed layer. The oxidized substrate can be stored for later use or transferred to a processing chamber for reducing the metal oxide to metal. The oxidized substrates formed in this manner provide metal oxides that are repeatable, uniform, and stable. The oxidized substrate is exposed to a reducing treatment under conditions that reduce the metal oxide to metal in the form of a film integrated with the metal seed layer.
    Type: Application
    Filed: March 13, 2015
    Publication date: April 21, 2016
    Inventors: Edward C. Opocensky, Tighe A. Spurlin, Jonathan D. Reid
  • Publication number: 20150376792
    Abstract: Method and apparatus for treating a substrate prior to deposition using atmospheric plasma are disclosed. A substrate can be provided between a substrate support and a plasma distributor, where the plasma distributor includes one or more atmospheric plasma sources. The atmospheric plasma sources can generate plasma under atmospheric pressure, where the plasma can include radicals and ions of a process gas, such as a reducing gas species. The substrate can be exposed to the plasma under atmospheric pressure to treat the surface of the substrate, where atmospheric pressure can be between about 50 Torr and about 760 Torr. In some embodiments, substrate includes a metal seed layer having portions converted to oxide of a metal, where exposure to the plasma reduces the oxide of the metal and reflows the metal in the metal seed layer.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Inventors: Tighe A. Spurlin, George Andrew Antonelli, Jonathan D. Reid, David Porter
  • Publication number: 20150299886
    Abstract: Method and apparatus for preparing a substrate with a semi-noble metal layer are disclosed. The substrate can be pretreated so that a metal oxide surface on the semi-noble metal layer can be reduced to a modified metal surface integrated with the semi-noble metal layer. The substrate can be pretreated using a remote plasma treatment. A copper seed layer can be formed on the semi-noble metal layer using either an acidic or alkaline bath with a plating solution including either at least two copper complexing agents with varying dentacity or a single hexadentate copper complexing agent that is in excess of the copper source. The copper complexing agents can include a hexadentate ligand and a bidentate ligand. In some embodiments, a bulk layer of copper can be subsequently deposited on the copper seed layer using an acidic bath.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 22, 2015
    Applicant: Lam Research Corporation
    Inventors: Natalia V. Doubina, Tighe A. Spurlin, Matthew A. Rigsby, Jonathan D. Reid, David Porter
  • Patent number: 9109295
    Abstract: An electroplating apparatus for filling recessed features on a semiconductor substrate includes an electrolyte concentrator configured for concentrating an electrolyte having Cu2+ ions to form a concentrated electrolyte solution that would have been supersaturated at 20° C. The electrolyte is maintained at a temperature that is higher than 20° C., such as at least at about 40° C. The apparatus further includes a concentrated electrolyte reservoir and a plating cell, where the plating cell is configured for electroplating with concentrated electrolyte at a temperature of at least about 40° C. Electroplating with electrolytes having Cu2+ concentration of at least about 60 g/L at temperatures of at least about 40° C. results in very fast copper deposition rates, and is particularly well-suited for filling large, high aspect ratio features, such as through-silicon vias.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: August 18, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Seshasayee Varadarajan, Steven T. Mayer