Patents by Inventor Jonathan E. Roth

Jonathan E. Roth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9360620
    Abstract: Embodiments of the invention describe apparatuses, systems, and methods of thermal management for photonic integrated circuits (PICs). Embodiments include a first device and a second device comprising including waveguides, wherein the first and second devices have different thermal operating conditions. A first region is adjacent to a waveguide of the first device, wherein its optical mode is to be substantially confined by the first region, and wherein the first region has a first thermal conductivity to dissipate heat based on the thermal operating condition of the first device. A second region is adjacent to a waveguide of the second device, wherein its optical mode is to be substantially confined by the second region, and wherein the second region has a second thermal conductivity to dissipate heat based on the thermal operating condition of the second device. In some embodiments, thermal cross talk is reduced without significantly affecting optical performance.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: June 7, 2016
    Assignee: Aurrion, Inc.
    Inventors: Anand Ramaswamy, Jonathan E. Roth, Erik Norberg, Brian Koch
  • Patent number: 9122004
    Abstract: Embodiments of the invention describe a modulator material heterogeneous-bonded over a resonator structure in a photonic integrated circuit (PIC) to create a resonance-enhanced modulator. The resulting structure may utilize optimal materials and optimized fabrication processes to create a device with the desired properties. Materials and processes used may combine advantages such as high index contrast, low propagation loss, small resonator volume, efficient modulation combined with desired linearity or nonlinearity, and precisely fabricated evanescent and interferometric couplers. The materials can be combined flexibly to create a resonator with a wide range of Free Spectral Range (FSR), cavity Q-factor, and modulation efficiency, allowing for resonance enhanced modulators to be designed optimally for a range of requirements.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: September 1, 2015
    Assignee: Aurrion, Inc.
    Inventors: Jonathan E. Roth, Brian Koch
  • Patent number: 8891913
    Abstract: Embodiments of the invention describe heterogeneous photonic integrated circuits (PIC) wherein a first silicon region is separated from the heterogeneous semiconductor material by a first distance, and a second silicon region is separated from the heterogeneous semiconductor material by a second distance greater than the first distance. Thus embodiments of the invention may be described as, in heterogeneous regions of a heterogeneous PIC, silicon waveguides using multiple heights of the silicon waveguide, or other structures with multiple offset heights between silicon and heterogeneous materials (as described herein).
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: November 18, 2014
    Assignee: Aurrion, Inc.
    Inventors: Jonathan E. Roth, Jae Shin, Gregory A. Fish
  • Publication number: 20110109914
    Abstract: A method and apparatus for extracting the vector optical properties of biological samples with micron-scale resolution in three dimensions, using polarization-sensitive optical coherence tomography (PS-OCT). The method measures net retardance, net fast axis, and reflectivity. Polarization sensing is accomplished by illuminating the sample with at least three separate polarization states, using consecutive acquisitions of the same pixel, A-scan, or B-scan. The method can be implemented using non-polarization-maintaining fiber and a single detector. This PS-OCT method reported measures fast axis explicitly. In a calibration test of the system, net retardance was measured with an average error of 7.5° (standard deviation) 2.2° over the retardance range 0° to 180°, and fast axis with average error of 4.8° over the range 0° to 180°.
    Type: Application
    Filed: September 22, 2010
    Publication date: May 12, 2011
    Inventors: Jonathan E. ROTH, Joseph A. IZATT, Andrew M. ROLLINS
  • Patent number: 7826059
    Abstract: A method and apparatus for extracting the vector optical properties of biological samples with micron-scale resolution in three dimensions, using polarization-sensitive optical coherence tomography (PS-OCT). The method measures net retardance, net fast axis, and reflectivity. Polarization sensing is accomplished by illuminating the sample with at least three separate polarization states, using consecutive acquisitions of the same pixel, A-scan, or B-scan. The method can be implemented using non-polarization-maintaining fiber and a single detector. This PS-OCT method reported measures fast axis explicitly. In a calibration test of the system, net retardance was measured with an average error of 7.5° (standard deviation 2.2°) over the retardance range 0° to 180°, and fast axis with average error of 4.8° over the range 0° to 180°.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: November 2, 2010
    Inventors: Jonathan E. Roth, Joseph A. Izatt, Andrew M. Rollins
  • Patent number: 7532379
    Abstract: An electro-optic semiconductor device (e.g., an optical modulator) having side access and beam propagation within the device is provided. Side access for the optical input and/or output facilitates disposition of electronic circuitry and/or heat sinking structures on the top and bottom surfaces of the modulator. Internal beam propagation instead of internal waveguiding advantageously simplifies optical coupling and alignment to the modulator. Interaction length within the device is preferably enhanced by passing through the device active region at a relatively shallow angle. The internally propagating beam is reflected from a reflective face parallel to the device active region. The side faces can be perpendicular or tilted with respect to the reflective face. Tilted side faces are preferably tilted to provide external beam paths parallel to the reflective face. Internal reflection from an angled side face can be employed to provide configurations having one side port and one top or bottom port.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: May 12, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David A. B. Miller, Jonathan E. Roth
  • Publication number: 20090086302
    Abstract: An electro-optic semiconductor device (e.g., an optical modulator) having side access and beam propagation within the device is provided. Side access for the optical input and/or output facilitates disposition of electronic circuitry and/or heat sinking structures on the top and bottom surfaces of the modulator. Internal beam propagation instead of internal waveguiding advantageously simplifies optical coupling and alignment to the modulator. Interaction length within the device is preferably enhanced by passing through the device active region at a relatively shallow angle. The internally propagating beam is reflected from a reflective face parallel to the device active region. The side faces can be perpendicular or tilted with respect to the reflective face. Tilted side faces are preferably tilted to provide external beam paths parallel to the reflective face. Internal reflection from an angled side face can be employed to provide configurations having one side port and one top or bottom port.
    Type: Application
    Filed: September 19, 2006
    Publication date: April 2, 2009
    Inventors: David A.B. Miller, Jonathan E. Roth
  • Publication number: 20020196446
    Abstract: A method and apparatus for extracting the vector optical properties of biological samples with micron-scale resolution in three dimensions, using polarization-sensitive optical coherence tomography (PS-OCT). The method measures net retardance, net fast axis, and reflectivity. Polarization sensing is accomplished by illuminating the sample with at least three separate polarization states, using consecutive acquisitions of the same pixel, A-scan, or B-scan. The method can be implemented using non-polarization-maintaining fiber and a single detector. This PS-OCT method reported measures fast axis explicitly. In a calibration test of the system, net retardance was measured with an average error of 7.5° (standard deviation 2.2°) over the retardance range 0° to 180°, and fast axis with average error of 4.8° over the range 0° to 180°.
    Type: Application
    Filed: January 22, 2002
    Publication date: December 26, 2002
    Inventors: Jonathan E. Roth, Joseph A. Izatt, Andrew M. Rollins