Patents by Inventor Jonathan J. Kaufman

Jonathan J. Kaufman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090327165
    Abstract: A system for quickly and efficiently re-supplying electrical energy to an electric vehicle having a rechargeable battery of a certain type of battery within a geographic area is provided. The system comprises one or more service stations within the geographic area. The service station has a storage facility for another rechargeable battery of the same type and an automated handling device for removing the battery from the vehicle and inserting the other battery into the vehicle. In one embodiment of the invention, the system may further include a system for recharging the rechargeable battery from, for example, solar energy.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventor: Jonathan J. Kaufman
  • Publication number: 20080194952
    Abstract: A method for the assessment of various properties of bone is provided. The method includes applying a pair of ultrasound transducers to skin on opposite sides of a bony member and generating an ultrasound signal and directing the signal through the bony member to obtain a bone output signal. The method further includes establishing a set of parameters associated with the bone output signal and then further processing the parameters in order to obtain the desired bone property. Two parameters are disclosed, namely two net time delay (NTD) parameters. An apparatus for the assessment of various properties of bone is also provided. The apparatus includes a pair of ultrasound transducers which may be single-element transducers or array transducers in any combination. The apparatus further includes various computer hardware components and computer software for generating and directing the ultrasound signal, establishing the net time delay parameter set and performing the processing.
    Type: Application
    Filed: January 30, 2008
    Publication date: August 14, 2008
    Inventors: Gangming Luo, Jonathan J. Kaufman
  • Publication number: 20080146927
    Abstract: An invention is disclosed for locating a region of interest in the calcaneus. A method and apparatus are disclosed that use a pair of ultrasound transducers for ultrasound assessment of various properties of bone. The invention includes positioning the transducers on the medial and lateral sides of the heel, respectively. The positioning is based on a size of a portion of the body of a subject upon whom the ultrasound assessment of the calcaneus is to be made. In a presently preferred embodiment of the invention, the length of the foot from the back to the head of the first metatarsal is used in conjunction with a proportionality constant and an angle, to position the pair of transducers. The positioning so obtained leads to the ability to make both (i) reproducible measurements and (ii) to be able to compare the results obtained in one person with another, because relatively analogous portions of the highly heterogeneous calcanei are assessed in both.
    Type: Application
    Filed: December 12, 2007
    Publication date: June 19, 2008
    Inventors: Gangming Luo, Jonathan J. Kaufman
  • Patent number: 6652473
    Abstract: Non-invasive therapeutic treatment of bone in vivo using ultrasound in conjunction with application of a biochemical compound or bone growth factor is performed by subjecting bone to an ultrasound signal supplied to an ultrasound transducer placed on the skin of a bony member, and involving a repetitive finite duration signal consisting of plural frequencies that are in the ultrasonic range to 20 MHz. Concurrent with application of the ultrasound is the utilization of a bone growth factor applied to the skin of a bony member before stimulation with ultrasound. Ultrasonic stimulation is operative to transport the bone growth factor to the bone and then to synergistically enhance the interaction of the bone growth factor with the bone, whereby to induce healing, growth and ingrowth responses. In another embodiment, a vibrational or mechanical input together with a biochemical compound enhances both bone fracture healing and treats osteoporosis.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: November 25, 2003
    Inventors: Jonathan J. Kaufman, Alessandro Chiabrera
  • Publication number: 20030103047
    Abstract: In a presently preferred embodiment of the invention, a three-dimensional scene is reproduced on a specialized light display which offers full multiviewpoint capability and auto-stereoscopic views. The displayed image is produced using a set of M two-dimensional images of the scene collected at a set of distinct spatial locations. These M two-dimensional images are processed through a specialized mathematical encoding scheme to obtain a set of N×K display-excitation electrical-input signals, where K is the number of pixels in the display, and N≦M is the number of individual light-radiating elements within one pixel. The display is thus comprised of a total of N×K light-radiating elements. Each of the K pixels is adapted for control of their associated radiance patterns. The display is connected for response to the set of N×K display-excitation electrical-input signals.
    Type: Application
    Filed: November 12, 2002
    Publication date: June 5, 2003
    Inventors: Alessandro Chiabrera, Bruno Bianco, Jonathan J. Kaufman
  • Patent number: 6570955
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a composite phantom. The composite phantom is comprised of at least two materials, superimposed on one another. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and composite phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of composite phantom data and sets of bone data. The data sets are then numerically processed using interpolation whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and the bone status is determined using interpolation based only on a single film.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: May 27, 2003
    Assignee: Cyberlogic, Inc.
    Inventors: Robert S. Siffert, Jonathan J. Kaufman
  • Publication number: 20030071813
    Abstract: In a presently preferred embodiment of the invention, a three-dimensional scene is reproduced on a specialized light display which offers full multiviewpoint capability and auto-stereoscopic views. The displayed image is produced using a set of M two-dimensional images of the scene collected at a set of distinct spatial locations. These M two-dimensional images are processed through a specialized mathematical encoding scheme to obtain a set of N×K display-excitation electrical-input signals, where K is the number of pixels in the display, and N≦Ed is the number of individual light-radiating elements within one pixel. The display is thus comprised of a total of N×K light-radiating elements. Each of the K pixels is adapted for control of their associated radiance patterns. The display is connected for response to the set of N×K display-excitation electrical-input signals.
    Type: Application
    Filed: December 11, 2001
    Publication date: April 17, 2003
    Inventors: Alessandro Chiabrera, Bruno Bianco, Jonathan J. Kaufman
  • Patent number: 6329963
    Abstract: In a presently preferred embodiment of the invention, a three-dimensional scene is reproduced on a specialized light display which offers full multiviewpoint capability and auto-stereoscopic views. The displayed image is produced using a set of M two-dimensional images of the scene collected at a set of distinct spatial locations. These M two-dimensional images are processed through a specialized mathematical encoding scheme to obtain a set of N×K display-excitation electrical-input signals, where K is the number of pixels in the display, and N≦M is the number of individual light-radiating elements within one pixel. The display is thus comprised of a total of N×K light-radiating elements. Each of the K pixels is adapted for control of their associated radiance patterns. The display is connected for response to the set of N×K display-excitation electrical-input signals.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: December 11, 2001
    Assignee: CyberLogic, Inc.
    Inventors: Alessandro Chiabrera, Bruno Bianco, Jonathan J. Kaufman
  • Patent number: 6324252
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a composite phantom. The composite phantom is comprised of at least two materials, superimposed on one another. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and composite phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of composite phantom data and sets of bone data. The data sets are then numerically processed using interpolation whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and the bone status is determined using interpolation based only on a single film.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: November 27, 2001
    Assignee: CyberLogic, Inc.
    Inventors: Robert S. Siffert, Jonathan J. Kaufman
  • Patent number: 6304263
    Abstract: A three-dimensional scene is reproduced on a specialized light display which offers full multiviewpoint capability and autostereoscopic views. The displayed image is produced using a set of M two-dimensional images of the scene collected at a set of distinct spatial locations. These M two-dimensional images are processed through a specialized mathematical encoding scheme to obtain a set of N×K display-excitation electrical-input signals, where K is the number of pixels in the display, and N≧M is the number of individual light-radiating elements within one pixel. The display is thus comprised of a total of N×K light-radiating elements. Each of the K pixels is adapted for control of their associated radiance patterns. The display is connected for response to the set of N×K display-excitation electrical-input signals. The display provides a multiviewpoint and autostereoscopic three-dimensional image associated with the original three-dimensional scene.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: October 16, 2001
    Assignee: Hyper3D Corp.
    Inventors: Alessandro Chiabrera, Bruno Bianco, Jonathan J. Kaufman
  • Publication number: 20010027278
    Abstract: Non-invasive therapeutic treatment of bone in vivo using ultrasound in conjunction with application of a biochemical compound or bone growth factor is performed by subjecting bone to an ultrasound signal supplied to an ultrasound transducer placed on the skin of a bony member, and involving a repetitive finite duration signal consisting of plural frequencies that are in the ultrasonic range to 20 MHz. Concurrent with application of the ultrasound is the utilization of a bone growth factor applied to the skin of a bony member before stimulation with ultrasound. Ultrasonic stimulation is operative to transport the bone growth factor to the bone and then to synergistically enhance the interaction of the bone growth factor with the bone, whereby to induce healing, growth and ingrowth responses. In another embodiment, a vibrational or mechanical input together with a biochemical compound enhances both bone fracture healing and treats osteoporosis.
    Type: Application
    Filed: March 21, 2001
    Publication date: October 4, 2001
    Applicant: Jonathan J. Kaufman
    Inventors: Jonathan J. Kaufman, Alessandro Chiabrera
  • Publication number: 20010009999
    Abstract: Non-invasive therapeutic treatment of plantar fasciitis in vivo using ultrasound is performed by subjecting a foot locale to an ultrasound signal supplied to an ultrasound transducer placed on the skin, and involving a repetitive finite duration signal consisting of plural frequencies that are in the ultrasonic range to 10 MHz. The ultrasound transducer is reproducibly positioned using an ultrasound fixture. The ultrasound signal is applied daily at least twice per day for 40 minutes per treatment, and has a power intensity (SATA) of 18 mW/cm2. In an alternative embodiment, an orthotic device holds the foot in dorsiflexion concomitant with ultrasound treatment.
    Type: Application
    Filed: March 9, 2001
    Publication date: July 26, 2001
    Applicant: Alessandro Chiabrera
    Inventors: Jonathan J. Kaufman, Allessandro Chiabrera, David Strom
  • Patent number: 6259450
    Abstract: In a presently preferred embodiment of the invention, a three-dimensional scene is reproduced on a specialized light display which offers full multiviewpoint capability and autostereoscopic views. The displayed image is produced using a set of M two-dimensional images of the scene collected at a set of distinct spatial locations. These M two-dimensional images are processed through a specialized encoding scheme to obtain a set of N×K display-excitation electrical-input signals, where K is the number of pixels in the display, and N≦M is the number of individual light-radiating elements within one pixel. The display is thus comprised of a total of N×K light-radiating elements. Each of the elements is adapted for control of their associated radiance patterns. The display is connected for response to the set of N×K display-excitation electrical-input signals.
    Type: Grant
    Filed: June 5, 1996
    Date of Patent: July 10, 2001
    Assignee: Hyper3D Corp.
    Inventors: Alessandro Chiabrera, Bruno Bianco, Jonathan J. Kaufman
  • Patent number: 6251088
    Abstract: Non-invasive therapeutic treatment of plantar fasciitis in vivo using ultrasound is performed by subjecting a foot locale to an ultrasound signal supplied to an ultrasound transducer placed on the skin, and involving a repetitive finite duration signal consisting of plural frequencies that are in the ultrasonic range to 10 MHz. The ultrasound transducer is reproducibly positioned using an ultrasound fixture. The ultrasound signal is applied daily at least twice per day for 40 minutes per treatment, and has a power intensity (SATA) of 18 mW/cm2. In an alternative embodiment, an orthotic device holds the foot in dorsiflexion concomitant with ultrasound treatment.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: June 26, 2001
    Inventors: Jonathan J. Kaufman, Alessandro Chiabrera, David Strom
  • Publication number: 20010004394
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a composite phantom. The composite phantom is comprised of at least two materials, superimposed on one another. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and composite phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of composite phantom data and sets of bone data. The data sets are then numerically processed using interpolation whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and the bone status is determined using interpolation based only on a single film.
    Type: Application
    Filed: November 30, 2000
    Publication date: June 21, 2001
    Applicant: CyberLogic, Inc.
    Inventors: Robert S. Siffert, Jonathan J. Kaufman
  • Publication number: 20010002925
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a composite phantom. The composite phantom is comprised of at least two materials, superimposed on one another. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and composite phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of composite phantom data and sets of bone data. The data sets are then numerically processed using interpolation whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and the bone status is determined using interpolation based only on a single film.
    Type: Application
    Filed: November 30, 2000
    Publication date: June 7, 2001
    Applicant: CyberLogic, Inc.,
    Inventors: Robert S. Siffert, Jonathan J. Kaufman
  • Patent number: 6231528
    Abstract: Non-invasive therapeutic treatment of bone in vivo using ultrasound in conjunction with application of a biochemical compound or bone growth factor is performed by subjecting bone to an ultrasound signal supplied to an ultrasound transducer placed on the skin of a bony member, and involving a repetitive finite duration signal consisting of plural frequencies that are in the ultrasonic range to 20 MHz. Concurrent with application of the ultrasound is the utilization of a bone growth factor applied to the skin of a bony member before stimulation with ultrasound. Ultrasonic stimulation is operative to transport the bone growth factor to the bone and then to synergistically enhance the interaction of the bone growth factor with the bone, whereby to induce healing, growth and ingrowth responses. In another embodiment, a vibrational or mechanical input together with a biochemical compound enhances both bone fracture healing and treats osteoporosis.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: May 15, 2001
    Inventors: Jonathan J. Kaufman, Alessandro Chiabrera
  • Patent number: 6213934
    Abstract: Non-invasive quantitative in-vivo electromagnetic evaluation of bone is performed by subjecting bone to an electrical excitation waveform supplied to a single magnetic field coil near the skin of a bony member, and involving a repetitive finite duration signal consisting of plural frequencies that are in the range 0 Hz-200 MHz. Signal-processing of a bone-current response signal and a bone-voltage response signal is operative to sequentially average the most recently received given number of successive bone-current and bone-voltage response signals to obtain an averaged per-pulse bone-current signal and an averaged per-pulse bone-voltage signal, and to produce their associated Fourier transforms. These Fourier transforms are further processed to obtain the inductively determined frequency-dependent bone-admittance function.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: April 10, 2001
    Assignee: Hyper3D Corp.
    Inventors: Bruno Bianco, Alessandro Chiabrera, Jonathan J. Kaufman
  • Patent number: 6173038
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a composite phantom. The composite phantom is comprised of at least two materials, superimposed on one another. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and composite phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of composite phantom data and sets of bone data. The data sets are then numerically processed using interpolation whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and the bone status is determined using interpolation based only on a single film.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: January 9, 2001
    Assignee: CyberLogic, Inc.
    Inventors: Robert S. Siffert, Jonathan J. Kaufman
  • Patent number: 6064716
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a material phantom. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and material phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of material phantom data and sets of bone data. The data sets are then processed with a feedforward neural network whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and input to the neural network to achieve higher accuracy and precision.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: May 16, 2000
    Assignee: CyberLogic, Inc.
    Inventors: Robert S. Siffert, Alessandro Chiabrera, Jonathan J. Kaufman