Patents by Inventor Jonathan J. Wierer, Jr.

Jonathan J. Wierer, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10553767
    Abstract: An LED subpixel can be provided with a reflector layer that controls viewing angles. After formation of an array of nanowires including first conductivity type cores and active layers, a second conductivity type semiconductor material layer, a transparent conductive oxide layer, and a dielectric material layer are sequentially formed. An opening is formed through the dielectric material layer over the array of nanowires. The reflector layer can be formed around the array of nanowires and through the opening in the dielectric material layer on the transparent conductive oxide layer. A conductive bonding structure is formed in electrical contact with the reflector layer.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: February 4, 2020
    Assignee: GLO AB
    Inventors: Fariba Danesh, Nathan F. Gardner, Jonathan J. Wierer, Jr.
  • Publication number: 20180198047
    Abstract: An LED subpixel can be provided with a reflector layer that controls viewing angles. After formation of an array of nanowires including first conductivity type cores and active layers, a second conductivity type semiconductor material layer, a transparent conductive oxide layer, and a dielectric material layer are sequentially formed. An opening is formed through the dielectric material layer over the array of nanowires. The reflector layer can be formed around the array of nanowires and through the opening in the dielectric material layer on the transparent conductive oxide layer. A conductive bonding structure is formed in electrical contact with the reflector layer.
    Type: Application
    Filed: January 8, 2018
    Publication date: July 12, 2018
    Inventors: Fariba DANESH, Nathan F. GARDNER, Jonathan J. WIERER, JR.
  • Patent number: 9385265
    Abstract: A semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region is grown over a porous III-nitride region. A III-nitride layer comprising InN is disposed between the light emitting layer and the porous III-nitride region. Since the III-nitride layer comprising InN is grown on the porous region, the III-nitride layer comprising InN may be at least partially relaxed, i.e. the III-nitride layer comprising InN may have an in-plane lattice constant larger than an in-plane lattice constant of a conventional GaN layer grown on sapphire.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: July 5, 2016
    Assignee: LUMILEDS LLC
    Inventors: Jonathan J. Wierer, Jr., John E. Epler
  • Patent number: 9368677
    Abstract: Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: June 14, 2016
    Assignee: Sandia Corporation
    Inventors: Jonathan J. Wierer, Jr., Andrew A. Allerman
  • Patent number: 9276382
    Abstract: Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: March 1, 2016
    Assignee: Sandia Corporation
    Inventors: Arthur J. Fischer, Jeffrey Y. Tsao, Jonathan J. Wierer, Jr., Xiaoyin Xiao, George T. Wang
  • Publication number: 20150270136
    Abstract: Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.
    Type: Application
    Filed: February 17, 2015
    Publication date: September 24, 2015
    Inventors: Arthur J. Fischer, Jeffrey Y. Tsao, Jonathan J. Wierer, JR., Xiaoyin Xiao, George T. Wang
  • Patent number: 9142726
    Abstract: Structures are incorporated into a semiconductor light emitting device which may increase the extraction of light emitted at glancing incidence angles. In some embodiments, the device includes a low index material that directs light away from the metal contacts by total internal reflection. In some embodiments, the device includes extraction features such as cavities in the semiconductor structure which may extract glancing angle light directly, or direct the glancing angle light into smaller incidence angles which are more easily extracted from the device.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: September 22, 2015
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Aurelien J. F. David, Henry Kwong-Hin Choy, Jonathan J. Wierer, Jr.
  • Patent number: 9000450
    Abstract: A photonic crystal is grown within a semiconductor structure, such as a III-nitride structure, which includes a light emitting region disposed between an n-type region and a p-type region. The photonic crystal may be multiple regions of semiconductor material separated by a material having a different refractive index than the semiconductor material. For example, the photonic crystal may be posts of semiconductor material grown in the structure and separated by air gaps or regions of masking material. Growing the photonic crystal, rather than etching a photonic crystal into an already-grown semiconductor layer, avoids damage caused by etching which may reduce efficiency, and provides uninterrupted, planar surfaces on which to form electric contacts.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 7, 2015
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Jonathan J. Wierer, Jr., Michael R. Krames, Nathan F. Gardner
  • Publication number: 20150079770
    Abstract: Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 19, 2015
    Inventors: Jonathan J. Wierer, JR., Andrew A. Allerman
  • Patent number: 8895335
    Abstract: A method for impurity-induced disordering in III-nitride materials comprises growing a III-nitride heterostructure at a growth temperature and doping the heterostructure layers with a dopant during or after the growth of the heterostructure and post-growth annealing of the heterostructure. The post-growth annealing temperature can be sufficiently high to induce disorder of the heterostructure layer interfaces.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: November 25, 2014
    Assignee: Sandia Corporation
    Inventors: Jonathan J. Wierer, Jr., Andrew A. Allerman
  • Patent number: 8785905
    Abstract: A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: July 22, 2014
    Assignee: Sandia Corporation
    Inventors: George T. Wang, Qiming Li, Jonathan J. Wierer, Jr., Daniel Koleske
  • Publication number: 20120267668
    Abstract: Structures are incorporated into a semiconductor light emitting device which may increase the extraction of light emitted at glancing incidence angles. In some embodiments, the device includes a low index material that directs light away from the metal contacts by total internal reflection. In some embodiments, the device includes extraction features such as cavities in the semiconductor structure which may extract glancing angle light directly, or direct the glancing angle light into smaller incidence angles which are more easily extracted from the device.
    Type: Application
    Filed: July 3, 2012
    Publication date: October 25, 2012
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Aurelien J.F. David, Henry Kwong-Hin Choy, Jonathan J. Wierer, JR.
  • Patent number: 8242521
    Abstract: Structures are incorporated into a semiconductor light emitting device which may increase the extraction of light emitted at glancing incidence angles. In some embodiments, the device includes a low index material that directs light away from the metal contacts by total internal reflection. In some embodiments, the device includes extraction features such as cavities in the semiconductor structure which may extract glancing angle light directly, or direct the glancing angle light into smaller incidence angles which are more easily extracted from the device.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: August 14, 2012
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company LLC
    Inventors: Aurelien J. F. David, Henry Kwong-Hin Choy, Jonathan J. Wierer, Jr.
  • Publication number: 20120161187
    Abstract: A photonic crystal is grown within a semiconductor structure, such as a III-nitride structure, which includes a light emitting region disposed between an n-type region and a p-type region. The photonic crystal may be multiple regions of semiconductor material separated by a material having a different refractive index than the semiconductor material. For example, the photonic crystal may be posts of semiconductor material grown in the structure and separated by air gaps or regions of masking material. Growing the photonic crystal, rather than etching a photonic crystal into an already-grown semiconductor layer, avoids damage caused by etching which may reduce efficiency, and provides uninterrupted, planar surfaces on which to form electric contacts.
    Type: Application
    Filed: February 24, 2012
    Publication date: June 28, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Jonathan J. Wierer, JR., Michael R. Krames, Nathan F. Gardner
  • Patent number: 8163575
    Abstract: A photonic crystal is grown within a semiconductor structure, such as a III-nitride structure, which includes a light emitting region disposed between an n-type region and a p-type region. The photonic crystal may be multiple regions of semiconductor material separated by a material having a different refractive index than the semiconductor material. For example, the photonic crystal may be posts of semiconductor material grown in the structure and separated by air gaps or regions of masking material. Growing the photonic crystal, rather than etching a photonic crystal into an already-grown semiconductor layer, avoids damage caused by etching which may reduce efficiency, and provides uninterrupted, planar surfaces on which to form electric contacts.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: April 24, 2012
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Jonathan J. Wierer, Jr., Michael R. Krames, Nathan F. Gardner
  • Publication number: 20120074448
    Abstract: A semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region and a photonic crystal formed within or on a surface of the semiconductor structure is combined with a ceramic layer which is disposed in a path of light emitted by the light emitting layer. The ceramic layer is composed of or includes a wavelength converting material such as a phosphor.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 29, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Jonathan J. Wierer, JR., SERGE BIERHUIZEN, AURELIEN J.F. DAVID, MICHAEL R. KRAMES, RICHARD J. WEISS
  • Publication number: 20110241056
    Abstract: Structures are incorporated into a semiconductor light emitting device which may increase the extraction of light emitted at glancing incidence angles. In some embodiments, the device includes a low index material that directs light away from the metal contacts by total internal reflection. In some embodiments, the device includes extraction features such as cavities in the semiconductor structure which may extract glancing angle light directly, or direct the glancing angle light into smaller incidence angles which are more easily extracted from the device.
    Type: Application
    Filed: June 16, 2011
    Publication date: October 6, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Aurelien J.F. David, Henry Kwong-Hin Choy, Jonathan J. Wierer, JR.
  • Publication number: 20110193059
    Abstract: A semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region is grown over a porous III-nitride region. A III-nitride layer comprising InN is disposed between the light emitting layer and the porous III-nitride region. Since the III-nitride layer comprising InN is grown on the porous region, the III-nitride layer comprising InN may be at least partially relaxed, i.e. the III-nitride layer comprising InN may have an in-plane lattice constant larger than an in-plane lattice constant of a conventional GaN layer grown on sapphire.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 11, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: JONATHAN J. WIERER, JR., JOHN E. EPLER
  • Patent number: 7928448
    Abstract: A semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region is grown over a porous III-nitride region. A III-nitride layer comprising InN is disposed between the light emitting layer and the porous III-nitride region. Since the III-nitride layer comprising InN is grown on the porous region, the III-nitride layer comprising InN may be at least partially relaxed, i.e. the III-nitride layer comprising InN may have an in-plane lattice constant larger than an in-plane lattice constant of a conventional GaN layer grown on sapphire.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: April 19, 2011
    Inventors: Jonathan J. Wierer, Jr., John E. Epler
  • Patent number: 7808011
    Abstract: A semiconductor light emitting device includes an in-plane active region that emits linearly-polarized light. An in-plane active region may include, for example, a {11 20} or {10 10} InGaN light emitting layer. In some embodiments, a polarizer oriented to pass light of a polarization of a majority of light emitted by the active region serves as a contact. In some embodiments, two active regions emitting the same or different colored light are separated by a polarizer oriented to pass light of a polarization of a majority of light emitted by the bottom active region, and to reflect light of a polarization of a majority of light emitted by the top active region. In some embodiments, a polarizer reflects light scattered by a wavelength converting layer.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: October 5, 2010
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lights Co., LLC
    Inventors: James C. Kim, John E. Epler, Nathan F. Gardner, Michael R. Krames, Jonathan J. Wierer, Jr.