Patents by Inventor Jonathan LOSH

Jonathan LOSH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11625127
    Abstract: A processing system configured to receive a first display control signal corresponding to a non-display update period of a display frame and a second display control signal corresponding to a display update period of the display frame. The processing system is further configured to acquire, based on receipt of the first display control signal, first resulting signals from sensor electrodes electrically connected to the sensor driver by operating the sensor electrodes for a first type of input sensing during a first period overlapping with at least a portion of the non-display update period. Further, the processing system is configured to acquire, based on receipt of the second display control signal, second resulting signals with the sensor electrodes by operating the sensor electrodes for a second type of input sensing during a second period overlapping with at least a portion of the display update period.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: April 11, 2023
    Assignee: Synaptics Incorporated
    Inventors: Jonathan Losh, Dipankar Talukdar
  • Patent number: 11513635
    Abstract: A processing system for an input device comprises sensor circuitry. The sensor circuitry is configured to operate sensor electrodes for input sensing during a first sensing frame. During a first period of the first sensing frame the sensor circuitry is configured to drive a first portion of the sensor electrodes with a sensing signal, drive a second portion of the sensor electrodes with a guarding signal, and drive a third portion of the sensor electrodes with a reference signal. The guarding signal and the sensing signal have at least one characteristic in common selected from the group consisting of amplitude, phase and frequency. The third portion of the sensor electrodes overlaps a first gate line of a display panel selected for updating during the first period.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: November 29, 2022
    Assignee: Synaptics Incorporated
    Inventors: Daisuke Ito, Hiroshi Takeyama, Jonathan Losh
  • Patent number: 11467694
    Abstract: An input-display device includes a display screen disposed on a display substrate, the display screen including a multitude of display pixels. The input-display device further includes a multitude of capacitive sensing electrodes for capacitive sensing in a sensing region of the display screen. The input-display device also includes a source driver circuit configured to generate a data voltage for driving a pixel circuit associated with one display pixel of the multitude of display pixels and determine a timing for a compensatory modulation of the data voltage. The timing is determined using a sensing waveform of the capacitive sensing. The source driver circuit is also configured to determine an amplitude of the compensatory modulation, generate a modulated data voltage by applying the compensatory modulation to the data voltage, and drive the pixel circuit using the modulated data voltage.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: October 11, 2022
    Assignee: Synaptics Incorporated
    Inventors: Daisuke Ito, Jonathan Losh
  • Publication number: 20220229533
    Abstract: A processing system for an input device comprises sensor circuitry. The sensor circuitry is configured to operate sensor electrodes for input sensing during a first sensing frame. During a first period of the first sensing frame the sensor circuitry is configured to drive a first portion of the sensor electrodes with a sensing signal, drive a second portion of the sensor electrodes with a guarding signal, and drive a third portion of the sensor electrodes with a reference signal. The guarding signal and the sensing signal have at least one characteristic in common selected from the group consisting of amplitude, phase and frequency. The third portion of the sensor electrodes overlaps a first gate line of a display panel selected for updating during the first period.
    Type: Application
    Filed: April 8, 2022
    Publication date: July 21, 2022
    Inventors: Daisuke Ito, Hiroshi Takeyama, Jonathan Losh
  • Publication number: 20220187976
    Abstract: An input-display device includes a display screen disposed on a display substrate, the display screen including a multitude of display pixels. The input-display device further includes a multitude of capacitive sensing electrodes for capacitive sensing in a sensing region of the display screen. The input-display device also includes a source driver circuit configured to generate a data voltage for driving a pixel circuit associated with one display pixel of the multitude of display pixels and determine a timing for a compensatory modulation of the data voltage. The timing is determined using a sensing waveform of the capacitive sensing. The source driver circuit is also configured to determine an amplitude of the compensatory modulation, generate a modulated data voltage by applying the compensatory modulation to the data voltage, and drive the pixel circuit using the modulated data voltage.
    Type: Application
    Filed: April 28, 2021
    Publication date: June 16, 2022
    Applicant: Synaptics Incorporated
    Inventors: Daisuke Ito, Jonathan Losh
  • Patent number: 11327605
    Abstract: A processing system for an input device comprises sensor circuitry. The sensor circuitry is configured to operate sensor electrodes for input sensing during a first sensing frame. During a first period of the first sensing frame the sensor circuitry is configured to drive a first portion of the sensor electrodes with a sensing signal, drive a second portion of the sensor electrodes with a guarding signal, and drive a third portion of the sensor electrodes with a reference signal. The guarding signal and the sensing signal have at least one characteristic in common selected from the group consisting of amplitude, phase and frequency. The third portion of the sensor electrodes overlaps a first gate line of a display panel selected for updating during the first period.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: May 10, 2022
    Assignee: Synaptics Incorporated
    Inventors: Daisuke Ito, Hiroshi Takeyama, Jonathan Losh
  • Publication number: 20220129136
    Abstract: A processing system configured to receive a first display control signal corresponding to a non-display update period of a display frame and a second display control signal corresponding to a display update period of the display frame. The processing system is further configured to acquire, based on receipt of the first display control signal, first resulting signals from sensor electrodes electrically connected to the sensor driver by operating the sensor electrodes for a first type of input sensing during a first period overlapping with at least a portion of the non-display update period. Further, the processing system is configured to acquire, based on receipt of the second display control signal, second resulting signals with the sensor electrodes by operating the sensor electrodes for a second type of input sensing during a second period overlapping with at least a portion of the display update period.
    Type: Application
    Filed: January 7, 2022
    Publication date: April 28, 2022
    Inventors: Jonathan Losh, Dipankar Talukdar
  • Patent number: 11294505
    Abstract: A sensor driver comprises a receiver and an interference mitigation element. The receiver is configured to acquire a resulting signal from a sensor electrode. The interference mitigation element is communicatively coupled with the receiver and is configured to receive interference data, generate an interference estimate from the interference data and a transfer function, and communicate the interference estimate to the receiver. The interference estimate removes charge from a resulting signal, mitigating effects of interference within the resulting signal.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: April 5, 2022
    Assignee: Synaptics Incorporated
    Inventors: Jonathan Losh, Derek Solven, Vladan Petrovic
  • Patent number: 11281345
    Abstract: A system and method for capacitive sensing comprise acquiring first capacitive sensor data and second capacitive sensor data from a plurality of sensor electrodes, and determining positional information from one or more input objects based on the first capacitive sensor data and the second capacitive sensor data. The plurality of sensor electrodes are driven with transcapacitive sensing signals for capacitive sensing during one or more transcapacitive sensing blocks to acquire the first sensor data. Further, the plurality of sensor electrodes are operated for absolute capacitive sensing during one or more absolute capacitive sensing blocks to acquire the second capacitive sensor data.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: March 22, 2022
    Assignee: Synaptics Incorporated
    Inventors: Nickolas V. Fotopoulos, Katayoun Goudarzi, Tracy Scott Dattalo, Joseph Kurth Reynolds, Jonathan Losh, Renuka Vidyut Shenoy, Derek Solven
  • Patent number: 11256366
    Abstract: A processing system configured to receive a first display control signal corresponding to a non-display update period of a display frame and a second display control signal corresponding to a display update period of the display frame. The processing system is further configured to acquire, based on receipt of the first display control signal, first resulting signals from sensor electrodes electrically connected to the sensor driver by operating the sensor electrodes for a first type of input sensing during a first period overlapping with at least a portion of the non-display update period. Further, the processing system is configured to acquire, based on receipt of the second display control signal, second resulting signals with the sensor electrodes by operating the sensor electrodes for a second type of input sensing during a second period overlapping with at least a portion of the display update period.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 22, 2022
    Assignee: Synaptics Incorporated
    Inventors: Jonathan Losh, Dipankar Talukdar
  • Publication number: 20210294462
    Abstract: A system and method for capacitive sensing comprise acquiring first capacitive sensor data and second capacitive sensor data from a plurality of sensor electrodes, and determining positional information from one or more input objects based on the first capacitive sensor data and the second capacitive sensor data. The plurality of sensor electrodes are driven with transcapacitive sensing signals for capacitive sensing during one or more transcapacitive sensing blocks to acquire the first sensor data. Further, the plurality of sensor electrodes are operated for absolute capacitive sensing during one or more absolute capacitive sensing blocks to acquire the second capacitive sensor data.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 23, 2021
    Inventors: Nickolas V. Fotopoulos, Katayoun Goudarzi, Tracy Scott Dattalo, Joseph Kurth Reynolds, Jonathan Losh, Renuka Vidyut Shenoy, Derek Solven
  • Publication number: 20210223939
    Abstract: A processing system configured to receive a first display control signal corresponding to a non-display update period of a display frame and a second display control signal corresponding to a display update period of the display frame. The processing system is further configured to acquire, based on receipt of the first display control signal, first resulting signals from sensor electrodes electrically connected to the sensor driver by operating the sensor electrodes for a first type of input sensing during a first period overlapping with at least a portion of the non-display update period. Further, the processing system is configured to acquire, based on receipt of the second display control signal, second resulting signals with the sensor electrodes by operating the sensor electrodes for a second type of input sensing during a second period overlapping with at least a portion of the display update period.
    Type: Application
    Filed: November 30, 2020
    Publication date: July 22, 2021
    Inventors: Jonathan LOSH, Dipankar TALUKDAR
  • Patent number: 11061521
    Abstract: A system and method for capacitive sensing comprise acquiring first capacitive sensor data and second capacitive sensor data from a plurality of sensor electrodes, and determining positional information from one or more input objects based on the first capacitive sensor data and the second capacitive sensor data. The plurality of sensor electrodes are driven with transcapacitive sensing signals for capacitive sensing during one or more transcapacitive sensing blocks to acquire the first sensor data. Each of the transcapacitive sensing signals is based on a respective one of a plurality of codes. Further, the plurality of sensor electrodes are operated for absolute capacitive sensing during one or more absolute capacitive sensing blocks to acquire the second capacitive sensor data.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: July 13, 2021
    Assignee: Synaptics Incorporated
    Inventors: Nickolas V. Fotopoulos, Katayoun Goudarzi, Tracy Scott Dattalo, Joseph Kurth Reynolds, Jonathan Losh, Renuka Vidyut Shenoy, Derek Solven
  • Publication number: 20210096686
    Abstract: A sensor driver comprises a receiver and an interference mitigation element. The receiver is configured to acquire a resulting signal from a sensor electrode. The interference mitigation element is communicatively coupled with the receiver and is configured to receive interference data, generate an interference estimate from the interference data and a transfer function, and communicate the interference estimate to the receiver. The interference estimate removes charge from a resulting signal, mitigating effects of interference within the resulting signal.
    Type: Application
    Filed: June 18, 2020
    Publication date: April 1, 2021
    Inventors: Jonathan LOSH, Derek SOLVEN, Vladan PETROVIC
  • Publication number: 20210041988
    Abstract: A system and method for capacitive sensing comprise acquiring first capacitive sensor data and second capacitive sensor data from a plurality of sensor electrodes, and determining positional information from one or more input objects based on the first capacitive sensor data and the second capacitive sensor data. The plurality of sensor electrodes are driven with transcapacitive sensing signals for capacitive sensing during one or more transcapacitive sensing blocks to acquire the first sensor data. Each of the transcapacitive sensing signals is based on a respective one of a plurality of codes. Further, the plurality of sensor electrodes are operated for absolute capacitive sensing during one or more absolute capacitive sensing blocks to acquire the second capacitive sensor data.
    Type: Application
    Filed: August 6, 2019
    Publication date: February 11, 2021
    Inventors: Nickolas V. FOTOPOULOS, Katayoun GOUDARZI, Tracy Scott DATTALO, Joseph Kurth REYNOLDS, Jonathan LOSH, Renuka Vidyut SHENOY, Derek SOLVEN
  • Patent number: 10444922
    Abstract: Sensor electrodes are coupled, in a first configuration, to input channels of a processing system. The sensor electrodes are used to acquire a measurement of current. In a second configuration that is different from the first configuration, the sensor electrodes are coupled to the input channels. The sensor electrodes in the second configuration are used to acquire a capacitive resulting signal. Positional information is determined using the current measurement and the capacitive resulting signal.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: October 15, 2019
    Assignee: SYNAPTICS INCORPORATED
    Inventors: Derek R. Solven, Matthew Stevenson, Robert J. Bolender, Jonathan Losh
  • Patent number: 10402027
    Abstract: Transmitter axis projection for capacitive sensing is disclosed. Transmitter axis projection includes having processing system. The processing system includes sensor circuitry configured to be coupled to transmitter electrodes and receiver electrodes. The sensor circuitry is configured to drive the transmitter electrodes with first transmitter signals and receive first resulting signals from the receiver electrodes, and drive only a first subset of the receiver electrodes with second transmitter signals and receive second resulting signals with the transmitter electrodes. The processing system further includes processing circuitry connected to the sensor circuitry and configured to partition the receiver electrodes into the first subset of receiver electrodes and a second subset of receiver electrodes, and generate a transmitter axis projection from the second resulting signals.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: September 3, 2019
    Assignee: Synaptics Incorporated
    Inventors: Matthew Stevenson, John Weinerth, Jonathan Losh, Derek Solven
  • Patent number: 10338740
    Abstract: A processing system for reducing background capacitance associated with a touch surface. The processing system includes: transmitter circuitry that drives a transmitter electrode of the touch surface with a waveform; receiver circuitry that detects input in a sensing region of the touch surface based on a resulting signal from a receiver electrode of the touch surface; and offset reduction circuitry connected to the receiver circuitry that: subtracts, prior to completion of an integration period of the waveform, a first plurality of charge associated with background capacitance from the resulting signal using a capacitor; executes a first reload of the capacitor prior to completion of the integration period of the waveform; and subtracts, prior to completion of the integration period of the waveform, a second plurality of charge associated with background capacitance from the resulting signal using the capacitor after the first reload.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: July 2, 2019
    Assignee: SYNAPTICS INCORPORATED
    Inventors: Jonathan Losh, John Weinerth, Derek Solven
  • Publication number: 20190056817
    Abstract: Transmitter axis projection for capacitive sensing is disclosed. Transmitter axis projection includes having processing system. The processing system includes sensor circuitry configured to be coupled to transmitter electrodes and receiver electrodes. The sensor circuitry is configured to drive the transmitter electrodes with first transmitter signals and receive first resulting signals from the receiver electrodes, and drive only a first subset of the receiver electrodes with second transmitter signals and receive second resulting signals with the transmitter electrodes. The processing system further includes processing circuitry connected to the sensor circuitry and configured to partition the receiver electrodes into the first subset of receiver electrodes and a second subset of receiver electrodes, and generate a transmitter axis projection from the second resulting signals.
    Type: Application
    Filed: August 21, 2017
    Publication date: February 21, 2019
    Inventors: Matthew Stevenson, John Weinerth, Jonathan Losh, Derek Solven
  • Patent number: 10162453
    Abstract: An input device includes a receiver electrode, a transmitter electrode and a processing system coupled to the receiver electrode and transmitter electrode. The processing system is configured to transmit a transmitter signal with the transmitter electrode during a first time period, inject a charge onto the receiver electrode during a second time period, and receive a resulting signal from the receiver electrode during a third time period. The resulting signal includes effects corresponding to the injected charge. The second time period and the third time period are non-overlapping.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: December 25, 2018
    Assignee: Synaptics Incorporated
    Inventors: Jonathan Losh, Don Speck