Patents by Inventor Jonathan Lu

Jonathan Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968597
    Abstract: A method for calculating a time-of-arrival of a multicarrier uplink signal includes: accessing a multicarrier reference signal including a subcarrier reference signal for each subcarrier frequency in a set of subcarrier frequencies; receiving the multicarrier uplink signal transmitted from a user device, the multicarrier uplink signal including a subcarrier uplink signal for each subcarrier frequency in the set of subcarrier frequencies; for each subcarrier frequency in the set of subcarrier frequencies, calculating a phase difference, in a set of phase differences, between the subcarrier reference signal for the subcarrier frequency and a subcarrier uplink signal for the subcarrier frequency; calculating a time-of-arrival of the multicarrier uplink signal at the transceiver based on the set of adjusted phase differences; and transmitting the time-of-arrival of the multicarrier uplink signal to a remote server.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: April 23, 2024
    Assignee: ZaiNar, Inc.
    Inventors: Jonathan Lu, Mainak Chowdhury, Philip A. Kratz
  • Publication number: 20240097811
    Abstract: A method including accessing a network graph including: a set of transceiver nodes representing a set of transceivers operating in a mesh network of transceivers; a set of transmitter nodes representing a set of transmitters communicating with the mesh network of transceivers; and a set of edges, each connecting a pair of nodes in the set of nodes. The method also includes: identifying a subgraph of the network graph associated with a node in the set of nodes, the node representing a transceiver; accessing a network state of the subgraph comprising a set of edge values for each edge in the subgraph; calculating a probability of failure of the transceiver based on the network state of the subgraph; and in response to detecting the probability of failure of the transceiver exceeding a threshold likelihood, triggering a corrective action at the transceiver.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 21, 2024
    Inventors: Philip A. Kratz, Jonathan Lu, Srdjan Miocinovic, Siamak Yousefi
  • Publication number: 20240095927
    Abstract: A computer-implemented method for partially supervised image segmentation having improved strong mask generalization includes obtaining, by a computing system including one or more computing devices, a machine-learned segmentation model, the machine-learned segmentation model including an anchor-free detector model and a deep mask head network, the deep mask head network including an encoder-decoder structure having a plurality of layers. The computer-implemented method includes obtaining, by the computing system, input data including tensor data. The computer-implemented method includes providing, by the computing system, the input data as input to the machine-learned segmentation model. The computer-implemented method includes receiving, by the computing system, output data from the machine-learned segmentation model, the output data including a segmentation of the tensor data, the segmentation including one or more instance masks.
    Type: Application
    Filed: March 4, 2021
    Publication date: March 21, 2024
    Inventors: Jonathan Chung-Kuan Huang, Vighnesh Nandan Birodkar, Siyang Li, Zhichao Lu, Vivek Rathod
  • Publication number: 20240097965
    Abstract: A flexible witness service system architecture is provided that comprises one or more cluster sites each having at least two storage/compute nodes; at least one local external device associated with at least one of the one or more cluster sites, the at least one local external device configured to run a local witness service. A central cloud management platform is in communication with the one or more cluster sites, the central cloud management platform being configured to run a cloud witness service. The local witness service and the cloud witness service perform identical arbitration services if a storage/compute node in one of the one or more cluster sites fails or communication between storage/compute nodes in a cluster fails.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Shweta Manohar Behere, Dhanesh Joshi, Jonathan S. Gorlin, Song Lu, Sean Joseph Hagan
  • Publication number: 20240073708
    Abstract: A method includes accessing a network graph including: a set of nodes, each representing a transceiver; and a set of edges, each edge connecting two nodes and representing a communication channel between a pair of transceivers. The method also includes: accessing a network state comprising a set of edge values for the set of edges; and identifying a set of triangle graphs in the network graph. The method further includes, for each triangle graph in the network graph: calculating a component diagnostic score based on a subset of edge values; and for each node in the triangle graph, updating a cumulative diagnostic score for the node based on the component diagnostic score. The method additionally includes, in response to detecting a cumulative diagnostic score for a node exceeding a threshold cumulative diagnostic score, triggering a corrective action at a transceiver represented by the node.
    Type: Application
    Filed: September 8, 2023
    Publication date: February 29, 2024
    Inventors: Jonathan Lu, Mainak Chowdhury, Ophir Sweiry, Srdjan Miocinovic
  • Patent number: 11863298
    Abstract: A method including accessing a network graph including: a set of transceiver nodes representing a set of transceivers operating in a mesh network of transceivers; a set of transmitter nodes representing a set of transmitters communicating with the mesh network of transceivers; and a set of edges, each connecting a pair of nodes in the set of nodes. The method also includes: identifying a subgraph of the network graph associated with a node in the set of nodes, the node representing a transceiver; accessing a network state of the subgraph comprising a set of edge values for each edge in the subgraph; calculating a probability of failure of the transceiver based on the network state of the subgraph; and in response to detecting the probability of failure of the transceiver exceeding a threshold likelihood, triggering a corrective action at the transceiver.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: January 2, 2024
    Assignee: ZaiNar, Inc.
    Inventors: Philip A. Kratz, Jonathan Lu, Srdjan Miocinovic, Siamak Yousefi
  • Publication number: 20230413013
    Abstract: A method for calculating a time-of-arrival of a multicarrier uplink signal includes: accessing a multicarrier reference signal including a subcarrier reference signal for each subcarrier frequency in a set of subcarrier frequencies; receiving the multicarrier uplink signal transmitted from a user device, the multicarrier uplink signal including a subcarrier uplink signal for each subcarrier frequency in the set of subcarrier frequencies; for each subcarrier frequency in the set of subcarrier frequencies, calculating a phase difference, in a set of phase differences, between the subcarrier reference signal for the subcarrier frequency and a subcarrier uplink signal for the subcarrier frequency; calculating a time-of-arrival of the multicarrier uplink signal at the transceiver based on the set of adjusted phase differences; and transmitting the time-of-arrival of the multicarrier uplink signal to a remote server.
    Type: Application
    Filed: June 16, 2023
    Publication date: December 21, 2023
    Inventors: Jonathan Lu, Mainak Chowdhury, Philip A. Kratz
  • Patent number: 11785482
    Abstract: A method includes accessing a network graph including: a set of nodes, each representing a transceiver; and a set of edges, each edge connecting two nodes and representing a communication channel between a pair of transceivers. The method also includes: accessing a network state comprising a set of edge values for the set of edges; and identifying a set of triangle graphs in the network graph. The method further includes, for each triangle graph in the network graph: calculating a component diagnostic score based on a subset of edge values; and for each node in the triangle graph, updating a cumulative diagnostic score for the node based on the component diagnostic score. The method additionally includes, in response to detecting a cumulative diagnostic score for a node exceeding a threshold cumulative diagnostic score, triggering a corrective action at a transceiver represented by the node.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: October 10, 2023
    Assignee: ZaiNar, Inc.
    Inventors: Jonathan Lu, Mainak Chowdhury, Ophir Sweiry, Srdjan Miocinovic
  • Publication number: 20230254110
    Abstract: A method includes: scheduling transmission of a first synchronization signal by a first node; and scheduling transmission of a second synchronization signal by a second node. The method also includes, after transmission of the first synchronization signal: receiving, from the first node, a first phase reference associated with the first synchronization signal; and receiving, from the second node, a first phase-of-arrival of the first synchronization signal at the second node. The method additionally includes, after transmission of the second synchronization signal: receiving, from the second node, a second phase reference associated with the second synchronization signal; and receiving, from the first node, a second phase-of-arrival of the second synchronization signal at the first node.
    Type: Application
    Filed: April 13, 2023
    Publication date: August 10, 2023
    Inventors: Philip A. Kratz, Mainak M. Chowdhury, Jonathan Lu, Siamak Yousefi
  • Patent number: 11722851
    Abstract: A method for calculating a time-of-arrival of a multicarrier uplink signal includes: accessing a multicarrier reference signal including a subcarrier reference signal for each subcarrier frequency in a set of subcarrier frequencies; receiving the multicarrier uplink signal transmitted from a user device, the multicarrier uplink signal including a subcarrier uplink signal for each subcarrier frequency in the set of subcarrier frequencies; for each subcarrier frequency in the set of subcarrier frequencies, calculating a phase difference, in a set of phase differences, between the subcarrier reference signal for the subcarrier frequency and a subcarrier uplink signal for the subcarrier frequency; calculating a time-of-arrival of the multicarrier uplink signal at the transceiver based on the set of adjusted phase differences; and transmitting the time-of-arrival of the multicarrier uplink signal to a remote server.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: August 8, 2023
    Assignee: ZaiNar, Inc.
    Inventors: Jonathan Lu, Mainak Chowdhury, Philip A. Kratz
  • Patent number: 11658798
    Abstract: A method includes: scheduling transmission of a first synchronization signal by a first node; and scheduling transmission of a second synchronization signal by a second node. The method also includes, after transmission of the first synchronization signal: receiving, from the first node, a first phase reference associated with the first synchronization signal; and receiving, from the second node, a first phase-of-arrival of the first synchronization signal at the second node. The method additionally includes, after transmission of the second synchronization signal: receiving, from the second node, a second phase reference associated with the second synchronization signal; and receiving, from the first node, a second phase-of-arrival of the second synchronization signal at the first node.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: May 23, 2023
    Assignee: ZaiNar, Inc.
    Inventors: Philip A. Kratz, Mainak M. Chowdhury, Jonathan Lu, Siamak Yousefi
  • Publication number: 20230014896
    Abstract: A method for calculating a time-of-arrival of a multicarrier uplink signal includes: accessing a multicarrier reference signal including a subcarrier reference signal for each subcarrier frequency in a set of subcarrier frequencies; receiving the multicarrier uplink signal transmitted from a user device, the multicarrier uplink signal including a subcarrier uplink signal for each subcarrier frequency in the set of subcarrier frequencies; for each subcarrier frequency in the set of subcarrier frequencies, calculating a phase difference, in a set of phase differences, between the subcarrier reference signal for the subcarrier frequency and a subcarrier uplink signal for the subcarrier frequency; calculating a time-of-arrival of the multicarrier uplink signal at the transceiver based on the set of adjusted phase differences; and transmitting the time-of-arrival of the multicarrier uplink signal to a remote server.
    Type: Application
    Filed: August 4, 2022
    Publication date: January 19, 2023
    Inventors: Jonathan Lu, Mainak Chowdhury, Philip A. Kratz
  • Publication number: 20220369072
    Abstract: A method for calculating a time-of-arrival of a multicarrier uplink signal includes: accessing a multicarrier reference signal including a subcarrier reference signal for each subcarrier frequency in a set of subcarrier frequencies; receiving the multicarrier uplink signal transmitted from a user device, the multicarrier uplink signal including a subcarrier uplink signal for each subcarrier frequency in the set of subcarrier frequencies; for each subcarrier frequency in the set of subcarrier frequencies, calculating a phase difference, in a set of phase differences, between the subcarrier reference signal for the subcarrier frequency and a subcarrier uplink signal for the subcarrier frequency; calculating a time-of-arrival of the multicarrier uplink signal at the transceiver based on the set of adjusted phase differences; and transmitting the time-of-arrival of the multicarrier uplink signal to a remote server.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 17, 2022
    Inventors: Jonathan Lu, Mainak Chowdhury, Philip A. Kratz
  • Patent number: 11445333
    Abstract: A method for calculating a time-of-arrival of a multicarrier uplink signal includes: accessing a multicarrier reference signal including a subcarrier reference signal for each subcarrier frequency in a set of subcarrier frequencies; receiving the multicarrier uplink signal transmitted from a user device, the multicarrier uplink signal including a subcarrier uplink signal for each subcarrier frequency in the set of subcarrier frequencies; for each subcarrier frequency in the set of subcarrier frequencies, calculating a phase difference, in a set of phase differences, between the subcarrier reference signal for the subcarrier frequency and a subcarrier uplink signal for the subcarrier frequency; calculating a time-of-arrival of the multicarrier uplink signal at the transceiver based on the set of adjusted phase differences; and transmitting the time-of-arrival of the multicarrier uplink signal to a remote server.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: September 13, 2022
    Assignee: ZaiNar, Inc.
    Inventors: Jonathan Lu, Mainak Chowdhury, Philip A. Kratz
  • Patent number: 11425536
    Abstract: A method for calculating a time-of-arrival of a multicarrier uplink signal includes: accessing a multicarrier reference signal including a subcarrier reference signal for each subcarrier frequency in a set of subcarrier frequencies; receiving the multicarrier uplink signal transmitted from a user device, the multicarrier uplink signal including a subcarrier uplink signal for each subcarrier frequency in the set of subcarrier frequencies; for each subcarrier frequency in the set of subcarrier frequencies, calculating a phase difference, in a set of phase differences, between the subcarrier reference signal for the subcarrier frequency and a subcarrier uplink signal for the subcarrier frequency; calculating a time-of-arrival of the multicarrier uplink signal at the transceiver based on the set of adjusted phase differences; and transmitting the time-of-arrival of the multicarrier uplink signal to a remote server.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: August 23, 2022
    Assignee: ZaiNar, Inc.
    Inventors: Jonathan Lu, Mainak Chowdhury, Philip A. Kratz
  • Publication number: 20220030391
    Abstract: A method for calculating a time-of-arrival of a multicarrier uplink signal includes: accessing a multicarrier reference signal including a subcarrier reference signal for each subcarrier frequency in a set of subcarrier frequencies; receiving the multicarrier uplink signal transmitted from a user device, the multicarrier uplink signal including a subcarrier uplink signal for each subcarrier frequency in the set of subcarrier frequencies; for each subcarrier frequency in the set of subcarrier frequencies, calculating a phase difference, in a set of phase differences, between the subcarrier reference signal for the subcarrier frequency and a subcarrier uplink signal for the subcarrier frequency; calculating a time-of-arrival of the multicarrier uplink signal at the transceiver based on the set of adjusted phase differences; and transmitting the time-of-arrival of the multicarrier uplink signal to a remote server.
    Type: Application
    Filed: July 19, 2021
    Publication date: January 27, 2022
    Inventors: Jonathan Lu, Mainak Chowdhury, Philip A. Kratz
  • Publication number: 20220030540
    Abstract: A method for calculating a time-of-arrival of a multicarrier uplink signal includes: accessing a multicarrier reference signal including a subcarrier reference signal for each subcarrier frequency in a set of subcarrier frequencies; receiving the multicarrier uplink signal transmitted from a user device, the multicarrier uplink signal including a subcarrier uplink signal for each subcarrier frequency in the set of subcarrier frequencies; for each subcarrier frequency in the set of subcarrier frequencies, calculating a phase difference, in a set of phase differences, between the subcarrier reference signal for the subcarrier frequency and a subcarrier uplink signal for the subcarrier frequency; calculating a time-of-arrival of the multicarrier uplink signal at the transceiver based on the set of adjusted phase differences; and transmitting the time-of-arrival of the multicarrier uplink signal to a remote server.
    Type: Application
    Filed: July 19, 2021
    Publication date: January 27, 2022
    Inventors: Jonathan Lu, Mainak Chowdhury, Philip A. Kratz
  • Patent number: 10372835
    Abstract: A technique for simplifying structure data for representing an environment. Polyhedrons can make up structure data used in an application such as modeling, visualization, and navigation. Consequently, the operations that are performed on the data often involve determining, for each polyhedron that defines a structure such as a building, whether the polyhedron obstructs a line-of-sight line between a first point in space being considered in the application and a second point. In order to determine whether a polyhedron obstructs a line-of-sight line, a data-processing system operating on the structure data must determine whether any walls of the polyhedron intersect the line. Thus, the more polyhedrons there are or the more vertices that are in each polyhedron, the more walls there are, and the more intersection checks are required, thereby adding to the computations. The disclosed technique reduces the number of walls by simplifying objects that make up the structure data.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: August 6, 2019
    Assignee: Polaris Wireless, Inc.
    Inventors: Vittorio Degli-Esposti, Jonathan Lu, Enrico Maria Vitucci
  • Patent number: 10372840
    Abstract: A technique for simplifying structure data for representing an environment. Polyhedrons can make up structure data used in an application such as modeling, visualization, and navigation. Consequently, the operations that are performed on the data often involve determining, for each polyhedron that defines a structure such as a building, whether the polyhedron obstructs a line-of-sight line between a first point in space being considered in the application and a second point. In order to determine whether a polyhedron obstructs a line-of-sight line, a data-processing system operating on the structure data must determine whether any walls of the polyhedron intersect the line. Thus, the more polyhedrons there are or the more vertices that are in each polyhedron, the more walls there are, and the more intersection checks are required, thereby adding to the computations. The disclosed technique reduces the number of walls by simplifying objects that make up the structure data.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: August 6, 2019
    Assignee: Polaris Wireless, Inc.
    Inventors: Vittorio Degli-Esposti, Jonathan Lu, Enrico Maria Vitucci
  • Patent number: 10366181
    Abstract: A technique for simplifying structure data for representing an environment. Polyhedrons can make up structure data used in an application such as modeling, visualization, and navigation. Consequently, the operations that are performed on the data often involve determining, for each polyhedron that defines a structure such as a building, whether the polyhedron obstructs a line-of-sight line between a first point in space being considered in the application and a second point. In order to determine whether a polyhedron obstructs a line-of-sight line, a data-processing system operating on the structure data must determine whether any walls of the polyhedron intersect the line. Thus, the more polyhedrons there are or the more vertices that are in each polyhedron, the more walls there are, and the more intersection checks are required, thereby adding to the computations. The disclosed technique reduces the number of walls by simplifying objects that make up the structure data.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: July 30, 2019
    Assignee: Polaris Wireless, Inc.
    Inventors: Vittorio Degli-Esposti, Jonathan Lu, Enrico Maria Vitucci