Patents by Inventor Jonathan M. Rothberg

Jonathan M. Rothberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11808700
    Abstract: Instrument control and data acquisition in advanced analytic systems that utilize optical pulses for sample analysis are described. Clocking signals for data acquisition, data processing, communication, and/or other data handling functionalities can be derived from an on-board pulsed optical source, such as a passively mode-locked laser. The derived clocking signals can operate in combination with one or more clocking signals from a stable oscillator, so that instrument operation and data handling can tolerate interruptions in operation of the pulsed optical source.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: November 7, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Benjamin Cipriany, Faisal R. Ahmad, Joseph D. Clark, Daniel B. Frier, Michael Ferrigno, Mel Davey, Tom Thurston, Brett J. Gyarfas, Todd Rearick, Jeremy Christopher Jordan
  • Publication number: 20230333188
    Abstract: According to some aspects, a method of suppressing noise in an environment of a magnetic resonance imaging system is provided. The method comprising estimating a transfer function based on multiple calibration measurements obtained from the environment by at least one primary coil and at least one auxiliary sensor, respectively, estimating noise present in a magnetic resonance signal received by the at least one primary coil based at least in part on the transfer function, and suppressing noise in the magnetic resonance signal using the noise estimate.
    Type: Application
    Filed: April 24, 2023
    Publication date: October 19, 2023
    Applicant: Hyperfine Operations, Inc.
    Inventors: Todd Rearick, Gregory L. Charvat, Matthew Scot Rosen, Jonathan M. Rothberg
  • Patent number: 11789104
    Abstract: Techniques for removing artefacts, such as RF interference and/or noise, from magnetic resonance data. The techniques include: obtaining input magnetic resonance (MR) data using at least one radio-frequency (RF) coil of a magnetic resonance imaging (MRI) system; and generating an MR image from input MR data at least in part by using a neural network model to suppress at least one artefact in the input MR data.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: October 17, 2023
    Assignee: Hyperfine Operations, Inc.
    Inventors: Carole Lazarus, Prantik Kundu, Sunli Tang, Seyed Sadegh Mohseni Salehi, Michal Sofka, Jo Schlemper, Hadrien A. Dyvorne, Rafael O'Halloran, Laura Sacolick, Michael Stephen Poole, Jonathan M. Rothberg
  • Publication number: 20230324481
    Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a Bo magnet configured to produce a Bo magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied. According to some aspects, substantially no shielding of the imaging region is provided.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Applicant: Hyperfine Operations, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, JR., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Publication number: 20230320668
    Abstract: Aspects relate to providing radio frequency components responsive to magnetic resonance signals. According to some aspects, a radio frequency component comprises at least one coil having a conductor arranged in a plurality of turns oriented about a region of interest to respond to corresponding magnetic resonant signal components. According to some aspects, the radio frequency component comprises a plurality of coils oriented to respond to corresponding magnetic resonant signal components. According to some aspects, an optimization is used to determine a configuration for at least one radio frequency coil.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Applicant: Hyperfine Operations, Inc.
    Inventors: Michael Stephen Poole, Gregory L. Charvat, Todd Rearick, Jonathan M. Rothberg
  • Patent number: 11774401
    Abstract: In one embodiment, a device is described. The device includes a material defining a reaction region. The device also includes a plurality of chemically-sensitive field effect transistors have a common floating gate in communication with the reaction region. The device also includes a circuit to obtain respective output signals from the chemically-sensitive field effect transistors indicating an analyte within the reaction region.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: October 3, 2023
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Keith G Fife, Jordan Owens, James Bustillo
  • Patent number: 11766696
    Abstract: A method of forming an ultrasonic transducer device includes forming a patterned metal electrode layer over a substrate, the patterned metal electrode layer comprising a lower layer and an upper layer formed on the lower layer; forming an insulation layer over the patterned metal electrode layer; and planarizing the insulation layer to the upper layer of the patterned metal electrode layer, wherein the upper layer comprises a electrically conductive material that serves as a chemical mechanical polishing (CMP) stop layer that has CMP selectivity with respect to the insulation layer and the lower layer, and wherein the upper layer has a CMP removal rate slower than that of the insulation layer.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: September 26, 2023
    Assignee: BFLY OPERATIONS, INC.
    Inventors: Lingyun Miao, Jianwei Liu, Jonathan M. Rothberg
  • Publication number: 20230295706
    Abstract: Aspects of the disclosure relate to compositions and methods for amplifying and/or detecting one or more target nucleic acid sequences (e.g., a nucleic acid sequence of one or more pathogens) in a biological sample obtained from a subject. In some embodiments, the pathogens are viral, bacterial, fungal, parasitic, or protozoan pathogens, such as SARS-CoV-2 or an influenza virus. In some embodiments, the methods comprise isothermal amplification of a target nucleic acid and subsequent detection of the amplification products.
    Type: Application
    Filed: January 12, 2023
    Publication date: September 21, 2023
    Applicants: Detect, Inc., Board of Regents, The University of Texas System
    Inventors: Spencer Glantz, Jonathan M. Rothberg, Xinghua Shi, Benjamin Rosenbluth, Jaymin Patel, William A. Hansen, Jonathan Naccache, Hope Kronman, Henry Kemble, Caixia Lv, Andrew Ellington, Sanchita Bhadra
  • Patent number: 11744797
    Abstract: The present invention relates to methods and compositions for treating lymphangioleiomyomatosis in a human subject in need of such treatment. The methods comprise administering to the subject via inhalation an aerosol composition comprising rapamycin or a prodrug or derivative (including analog) thereof.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: September 5, 2023
    Assignee: AI Therapeutics, Inc.
    Inventors: Henri Lichenstein, Jonathan M. Rothberg, Thomas Armer, Lawrence S. Melvin, Jr.
  • Patent number: 11737665
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: August 29, 2023
    Assignee: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20230258862
    Abstract: System and methods for optical power distribution to a large numbers of sample wells within an integrated device that can analyze single molecules and perform nucleic acid sequencing are described. The integrated device may include a grating coupler configured to receive an optical beam from an optical source and optical splitters configured to divide optical power of the grating coupler to waveguides of the integrated device positioned to couple with the sample wells. Outputs of the grating coupler may vary in one or more dimensions to account for an optical intensity profile of the optical source.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabir, Gerard Schmid, Jason w. Sickler, Paul E. Glenn, Lawrence C. West, Kyle Preston, Alexander Gondarenko, Benjamin Cipriany, James Beach, Keith G. Fife, Farshid Ghasemi
  • Publication number: 20230255944
    Abstract: The present invention relates to methods and compositions for the treatment and prophylaxis of pulmonary arterial hypertension (PAH) in a human subject in need of such treatment, the methods comprising the pulmonary administration to the subject, preferably via inhalation of a composition comprising rapamycin or a prodrug or derivative thereof.
    Type: Application
    Filed: October 14, 2022
    Publication date: August 17, 2023
    Applicant: AI Therapeutics, Inc.
    Inventors: Thomas Armer, Lawrence S. Melvin, JR., Jonathan M. Rothberg, Henri Lichenstein
  • Patent number: 11719635
    Abstract: An integrated circuit includes a photodetection region configured to receive incident photons. The photodetection region is configured to produce a plurality of charge carriers in response to the incident photons. The integrated circuit includes at least one charge carrier storage region. The integrated circuit also includes a charge carrier segregation structure configured to selectively direct charge carriers of the plurality of charge carriers directly into the at least one charge carrier storage region based upon times at which the charge carriers are produced.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: August 8, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Keith G. Fife, David M. Boisvert
  • Patent number: 11719636
    Abstract: An integrated circuit includes a photodetection region configured to receive incident photons. The photodetection region is configured to produce a plurality of charge carriers in response to the incident photons. The integrated circuit also includes at least one charge carrier storage region. The integrated circuit also includes a charge carrier segregation structure configured to selectively direct charge carriers of the plurality of charge carriers into the at least one charge carrier storage region based upon times at which the charge carriers are produced.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: August 8, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Keith G. Fife, David M. Boisvert
  • Publication number: 20230240986
    Abstract: The present invention relates to methods and compositions for anti-aging therapy and for the treatment and prophylaxis of age-related diseases and disorders in a human subject in need of such therapy or treatment, the methods comprising the pulmonary administration to the subject, preferably via inhalation, of composition comprising rapamycin, or a prodrug or derivative thereof.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Inventors: Thomas Armer, Lawrence S. Melvin, JR., Jonathan M. Rothberg, Henri Lichenstein
  • Patent number: 11712221
    Abstract: A system comprising a multi-modal ultrasound probe configured to operate in a plurality of operating modes associated with a respective plurality of configuration profiles; and a computing device coupled to the handheld multi-modal ultrasound probe and configured to, in response to receiving input indicating an operating mode selected by a user, cause the multi-modal ultrasound probe to operate in the selected operating mode.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: August 1, 2023
    Assignee: BFLY OPERATIONS, INC.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife
  • Publication number: 20230220465
    Abstract: Aspects of the disclosure relate to compositions and methods for amplifying and/or detecting one or more target nucleic acid sequences (e.g., a nucleic acid sequence of one or more pathogens) in a biological sample obtained from a subject. In some embodiments, the pathogens are viral, bacterial, fungal, parasitic, or protozoan pathogens, such as SARS-CoV-2 or an influenza virus. In some embodiments, the methods comprise isothermal amplification of a target nucleic acid and subsequent detection of the amplification products.
    Type: Application
    Filed: January 12, 2023
    Publication date: July 13, 2023
    Applicant: Detect, Inc.
    Inventors: Spencer Glantz, Jonathan M. Rothberg, Xinghua Shi, Benjamin Rosenbluth, Jaymin Patel, William A. Hansen, Jonathan Naccache, Hope Kronman, Henry Kemble, Caixia Lv
  • Patent number: 11690602
    Abstract: Aspects of the technology described herein relate to ultrasound data collection using tele-medicine. An instructor electronic device may generate for display an instructor augmented reality interface and receive, on the instructor augmented reality interface, an instruction for moving an ultrasound imaging device. The instructor augmented reality interface may include a video showing the ultrasound imaging device and a superposition of arrows on the video, where each of the arrows corresponds to a possible instruction for moving the ultrasound imaging device. A user electronic device may receive, from the instructor electronic device, an instruction for moving an ultrasound imaging device, and generate for display, on a user augmented reality interface shown on the user electronic device, the instruction for moving the ultrasound imaging device.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: July 4, 2023
    Assignee: BFLY OPERATIONS, INC.
    Inventors: Maxim Zaslavsky, Matthew de Jonge, Tomer Gafner, Eamon Duffy, Jonathan M. Rothberg
  • Patent number: 11692964
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: July 4, 2023
    Assignee: Life Technologies Corporation
    Inventors: Mark James Milgrew, Jonathan M. Rothberg, James Bustillo
  • Publication number: 20230207062
    Abstract: A method includes obtaining, from one or more sequencing devices, raw data detected from luminescent labels associated with nucleotides during nucleotide incorporation events; and processing the raw data to perform a comparison of base calls produced by a learning enabled, automatic base calling module of the one or more sequencing devices with actual values associated with the raw data, wherein the base calls identify one or more individual nucleotides from the raw data. Based on the comparison, an update to the learning enabled, automatic base calling module is created using at least some of the obtained raw data, and the update is made available to the one or more sequencing devices.
    Type: Application
    Filed: December 15, 2022
    Publication date: June 29, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Michael Meyer, Umut Eser