Patents by Inventor Jonathan Mark Boutell

Jonathan Mark Boutell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141428
    Abstract: The present disclosure provides methods and systems for detecting multiple different nucleotides in a sample. In particular, the disclosure provides for detection of multiple different nucleotides in a sample utilizing fewer detection moieties than the number of nucleotides being detected and/or fewer imaging events than the number of nucleotides being detected.
    Type: Application
    Filed: October 18, 2023
    Publication date: May 2, 2024
    Inventors: Robert C. Kain, Xiaohai Liu, Wenyi Feng, Bernard Hirschbein, Helmy A. Eltoukhy, Xiaolin Wu, Geoffrey Paul Smith, Jonathan Mark Boutell, Thomas Joseph, Randall Smith, Min-Jui Richard Shen, Carolyn Tregidgo, Kay Klausing
  • Publication number: 20240117416
    Abstract: The disclosure relates to methods, compositions, and kits for improving seeding efficiency of flow cells with polynucleotides, and applications thereof, including for sequencing.
    Type: Application
    Filed: January 28, 2022
    Publication date: April 11, 2024
    Inventors: Yir-Shyuan Wu, Filiz Gorpe-Yasar, Tarun Kuman Khurana, Jonathan Mark Boutell
  • Patent number: 11946096
    Abstract: The present invention relates to methods of imaging template hybridisation for estimating cluster numbers prior to solid phase amplification and sequencing. More particularly, an initial round of imaging is carried out at the single molecule template hybridisation stage which allows a general estimation of cluster numbers prior to clusters being formed. Amplification of the signal allows single molecule imaging to be carried out using standard sequencing imaging apparatus.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: April 2, 2024
    Assignee: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Isabelle Marie Julia Rasolonjatovo, Jonathan Mark Boutell, Vincent Peter Smith, Roberto Rigatti
  • Patent number: 11938475
    Abstract: In an example of the method, a functionalized coating layer is applied in depressions of a patterned flow cell substrate. The depressions are separated by interstitial regions. A primer is grafted to the functionalized coating layer to form a grafted functionalized coating layer in the depressions. A hydrogel is applied on at least the grafted functionalized coating layer.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: March 26, 2024
    Assignees: Ilumina, Inc., Illumina Cambridge Limited
    Inventors: Hongji Ren, Jonathan Mark Boutell, John A. Moon, M. Shane Bowen, Alex Nemiroski, Gary Mark Skinner, Kenny Chen
  • Patent number: 11866780
    Abstract: The present invention relates to the field of molecular biology, and more specifically to methods for reducing the complexity of a nucleic acid sample.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: January 9, 2024
    Assignee: Illumina Cambridge Limited
    Inventor: Jonathan Mark Boutell
  • Publication number: 20240003057
    Abstract: A method of characterizing candidate agents including steps of (a) providing a library of candidate agents attached to nucleic acid tags; (b) contacting the library with a solid support to attach the candidate agents to the solid support, whereby an array of candidate agents is formed; (c) contacting the array with a screening agent, wherein one or more candidate agents in the array react with the screening agent; (d) detecting the array to determine that at least one candidate agent in the array reacts with the screening agent; (e) sequencing the nucleic acid tag to determine the tag sequences attached to candidate agents in the array; and (f) identifying the at least one candidate agent in the array that reacts with the screening agent based on the tag sequence that is attached to the at least one candidate agent.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Molly He, Michael Previte, Misha Golynskiy, Matthew William Kellinger, Sergio Peisajovich, Jonathan Mark Boutell
  • Publication number: 20230407388
    Abstract: Described herein is a polynucleotide for use as a sequencing template comprising multiple inserts. Also described herein are method of generating and using these polynucleotides and methods of use of such templates, including analysis of contiguity information. Further, sequencing templates comprising an insert sequence and a copy of the insert sequence can be used to correct for random errors generated during sequencing or amplification or to identify nucleobase damage or other mutation that leads to non-canonical base pairing in a double-stranded nucleic acid. Methods of performing methylation analysis are also described herein.
    Type: Application
    Filed: April 20, 2023
    Publication date: December 21, 2023
    Applicants: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Tarun Khurana, Yir-Shyuan Wu, Niall Anthony Gormley, Jonathan Mark Boutell
  • Patent number: 11827932
    Abstract: The present disclosure provides methods and systems for detecting multiple different nucleotides in a sample. In particular, the disclosure provides for detection of multiple different nucleotides in a sample utilizing fewer detection moieties than the number of nucleotides being detected and/or fewer imaging events than the number of nucleotides being detected.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: November 28, 2023
    Assignee: Illumina, Inc.
    Inventors: Robert C. Kain, Xiaohai Liu, Wenyi Feng, Bernard Hirschbein, Helmy A. Eltoukhy, Xiaolin Wu, Geoffrey Paul Smith, Jonathan Mark Boutell, Thomas Joseph, Randall Smith, Min-Jui Richard Shen, Carolyn Tregidgo, Kay Klausing
  • Publication number: 20230340593
    Abstract: The present disclosure relates to the field of molecular biology and more specifically to microarrays and methods.
    Type: Application
    Filed: May 18, 2023
    Publication date: October 26, 2023
    Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
  • Patent number: 11795581
    Abstract: A method of characterizing candidate agents including steps of (a) providing a library of candidate agents attached to nucleic acid tags; (b) contacting the library with a solid support to attach the candidate agents to the solid support, whereby an array of candidate agents is formed; (c) contacting the array with a screening agent, wherein one or more candidate agents in the array react with the screening agent; (d) detecting the array to determine that at least one candidate agent in the array reacts with the screening agent; (e) sequencing the nucleic acid tag to determine the tag sequences attached to candidate agents in the array; and (f) identifying the at least one candidate agent in the array that reacts with the screening agent based on the tag sequence that is attached to the at least one candidate agent.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: October 24, 2023
    Assignee: Illumina, Inc.
    Inventors: Molly He, Michael Previte, Misha Golynskiy, Matthew William Kellinger, Sergio Peisajovich, Jonathan Mark Boutell
  • Publication number: 20230295687
    Abstract: The present disclosure is concerned with compositions and methods for reducing the steps used in the generation of monoclonal clusters by combining the enzymes used for linearization and removal of unused surface primers.
    Type: Application
    Filed: April 26, 2023
    Publication date: September 21, 2023
    Applicant: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Jonathan Mark Boutell, Oliver Miller
  • Publication number: 20230279469
    Abstract: An example of a flow cell includes a substrate having depressions separated by interstitial regions. First and second primers are immobilized within the depressions. First transposome complexes are immobilized within the depressions, and the first transposome complexes include a first amplification domain. Second transposome complexes are also immobilized within the depressions, and the second transposome complexes include a second amplification domain. Some of the first transposome complexes, or some of the second transposome complexes, or some of both of the first and second transposome complexes include a modification to reduce tagmentation efficiency.
    Type: Application
    Filed: December 23, 2022
    Publication date: September 7, 2023
    Inventors: Johan Sebastian Basuki, Jonathan Mark Boutell, Jeffrey S. Fisher, Louise Jane Fraser, Wayne N. George, Niall Anthony Gormley, David Jones, Xiaoyu Ma, Maria Ines Martins Vitoriano, Zhong Mei, Oliver Jon Miller, Andrew Price, Sebastien Georg Gabriel Ricoult, Vicki S. Thomson, Jacqueline C. Weir, Xiaoy Ma, Weihua Chang, Hui Han
  • Publication number: 20230279385
    Abstract: A variety of different types of targeted transposome complexes are described herein that may be used to mediate sequence-specific targeted transposition of nucleic acids.
    Type: Application
    Filed: February 16, 2023
    Publication date: September 7, 2023
    Applicants: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Frank J. STEEMERS, Jonathan Mark BOUTELL, Pietro GATTI LAFRANCONI, Oliver Jon MILLER, Emma BELL, Sebastien Georg Gabriel RICOULT, Niall Anthony GORMLEY, Kim SCHNEIDER
  • Publication number: 20230212667
    Abstract: Polynucleotide sequencing methods for sequencing one or more polynucleotide templates use primers bound to a surface as sequencing primers. The surface primers may include at least a portion of a surface oligonucleotide used during cluster formation. The sequencing methods may be used for single stranded sequencing or double stranded sequencing. Double stranded sequencing methods may employ an enzyme that has nick-translation activity. A kit includes all the reagents needed for sequencing does not include sequencing primers. The kit may be used to accomplish the sequencing methods of the present disclosure.
    Type: Application
    Filed: December 28, 2022
    Publication date: July 6, 2023
    Applicants: ILLUMINA CAMBRIDGE LIMITED, ILLUMINA, INC.
    Inventors: Jonathan Mark Boutell, Eli M. Carrami, Pietro Gatti Lafranconi, Philip Balding, Oliver Jon Miller, Kay Klausing, Justin Robbins, Xiaolin Wu
  • Patent number: 11692223
    Abstract: The present disclosure relates to the field of molecular biology and more specifically to microarrays and methods, including methods for modifying immobilized capture primers comprising: a) contacting a substrate comprising a plurality of immobilized capture primers with a plurality of template nucleic acids under conditions sufficient for hybridization to produce one or more immobilized template nucleic acids, and b) extending one or more immobilized capture primers to produce one or more immobilized extension products complementary to the one or more template nucleic acid.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: July 4, 2023
    Assignee: Illumina Cambridge Limited
    Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
  • Patent number: 11667953
    Abstract: The present disclosure is concerned with compositions and methods for reducing the steps used in the generation of monoclonal clusters by combining the enzymes used for linearization and removal of unused surface primers.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: June 6, 2023
    Assignee: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Jonathan Mark Boutell, Oliver Miller
  • Publication number: 20230160006
    Abstract: The present invention relates to a sequencing method which allows for increased rates of sequencing and an increase in the density of sequencing data. The system may be based on next generation sequencing methods such as sequencing by synthesis (SBS) but uses multiple primers bound at different positions on the same nucleic acid strand.
    Type: Application
    Filed: January 12, 2023
    Publication date: May 25, 2023
    Inventor: Jonathan Mark Boutell
  • Publication number: 20230137106
    Abstract: The present disclosure is concerned with compositions and methods for the paired-end sequencing of target nucleic acids, and more particularly to obtaining nucleotide sequence information from two separate regions of target nucleic acids using amplification sites having a single type of surface primer.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 4, 2023
    Applicant: Illumina Cambridge Limited
    Inventors: Jonathan Mark Boutell, Pietro Gatti-Lafranconi
  • Patent number: 11634765
    Abstract: The present disclosure is concerned with compositions and methods for the paired-end sequencing of target nucleic acids, and more particularly to obtaining nucleotide sequence information from two separate regions of target nucleic acids using amplification sites having a single type of surface primer.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: April 25, 2023
    Assignee: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Jonathan Mark Boutell, Pietro Gatti-Lafranconi
  • Patent number: 11605446
    Abstract: The present disclosure provides methods and systems for determining and/or characterizing one or more haplotypes and/or phasing of haplotypes in a nucleic acid sample. In particular, the disclosure provides methods for determining a haplotype and/or phasing of haplotypes in a nucleic acid sample by incorporating synthetic polymorphisms into fragments of a nucleic acid sample and utilizing the synthetic polymorphisms in determining one or more haplotypes and/or phasing of haplotypes.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: March 14, 2023
    Assignee: Illumina Cambridge Limited
    Inventors: Roberto Rigatti, Jonathan Mark Boutell