Patents by Inventor Jonathan P. Douglas

Jonathan P. Douglas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220375898
    Abstract: An Integrated Circuit (IC) package is provided, comprising a first IC die having a first capacitor and a logic circuit, and a second IC die having a second capacitor. The first IC die and the second IC die may be stacked within the IC package one on top of another and electrically coupled with die-to-die interconnects. The logic circuit is electrically coupled in a power delivery network to the first capacitor and the second capacitor. The first IC die and the second IC die include respective back-end-of-line portions in which the first capacitor and the second capacitor, which may comprise metal-insulator-metal capacitors in some embodiments are situated. In some embodiments, the second capacitor is situated in a shadow of the logic circuit. In various embodiments, the first IC die and the second IC die comprise any suitable pair in a plurality of stacked IC dies within an IC package.
    Type: Application
    Filed: May 18, 2021
    Publication date: November 24, 2022
    Applicant: Intel Corporation
    Inventors: Vishram Shriram Pandit, Narayanan Natarajan, Jayanth M. Kalyan, Khondker Z. Ahmed, Jonathan P. Douglas, Gururaj K. Shamanna, Chin Lee Kuan
  • Patent number: 11437294
    Abstract: Embodiments disclosed herein include electronics packages with improved thermal pathways. In an embodiment, an electronics package includes a package substrate. In an embodiment, the package substrate comprises a plurality of backside layers, a plurality of front-side layers, and a core layer between the plurality of backside layers and the plurality of front-side layers. In an embodiment, an inductor is embedded in the plurality of backside layers. In an embodiment, a plurality of bumps are formed over the front-side layers and thermally coupled to the inductor. In an embodiment, the plurality of bumps are thermally coupled to the core layer by a plurality of vias.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: September 6, 2022
    Assignee: Intel Corporation
    Inventors: Sameer Shekhar, Amit Kumar Jain, Kaladhar Radhakrishnan, Jonathan P. Douglas, Chin Lee Kuan
  • Patent number: 10796977
    Abstract: Circuitry to apply heat to a die while the die junction temperature is below a minimum die junction temperature of an operating die junction temperature range for the die is provided. The circuitry to avoid a system boot failure when the die junction temperature is below the operating die junction temperature range of the die.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: October 6, 2020
    Assignee: Intel Corporation
    Inventors: John Fallin, Daniel J. Ragland, Jonathan P. Douglas
  • Publication number: 20200286804
    Abstract: Circuitry to apply heat to a die while the die junction temperature is below a minimum die junction temperature of an operating die junction temperature range for the die is provided. The circuitry to avoid a system boot failure when the die junction temperature is below the operating die junction temperature range of the die.
    Type: Application
    Filed: March 4, 2019
    Publication date: September 10, 2020
    Inventors: John FALLIN, Daniel J. RAGLAND, Jonathan P. DOUGLAS
  • Publication number: 20200051884
    Abstract: Embodiments disclosed herein include electronics packages with improved thermal pathways. In an embodiment, an electronics package includes a package substrate. In an embodiment, the package substrate comprises a plurality of backside layers, a plurality of front-side layers, and a core layer between the plurality of backside layers and the plurality of front-side layers. In an embodiment, an inductor is embedded in the plurality of backside layers. In an embodiment, a plurality of bumps are formed over the front-side layers and thermally coupled to the inductor. In an embodiment, the plurality of bumps are thermally coupled to the core layer by a plurality of vias.
    Type: Application
    Filed: August 9, 2018
    Publication date: February 13, 2020
    Inventors: Sameer SHEKHAR, Amit Kumar JAIN, Kaladhar RADHAKRISHNAN, Jonathan P. DOUGLAS, Chin Lee KUAN
  • Patent number: 10541615
    Abstract: Techniques and mechanisms for mitigating an overshoot of a supply voltage provided with a voltage regulator (VR). In an embodiment, buck converter functionality of a VR is provided with first circuitry comprising a first inductor and first switch circuits variously coupled thereto. Second circuitry of the VR comprises a second inductor and second switch circuits variously coupled thereto. In response to an indication of a voltage overshoot condition, respective states of the first switch circuits and the second switch circuits are configured to enable a conductive path for dissipating energy with the first inductor, the second inductor, and various ones of the first switch circuits and the second switch circuits. In another embodiment, mitigating the voltage overshoot condition comprises alternately toggling between two different configurations of the second switch circuits.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: January 21, 2020
    Assignee: Intel Corporation
    Inventors: Amit Jain, Sameer Shekhar, Alexander Lyakhov, Jonathan P. Douglas, Vivek Saxena
  • Patent number: 10503227
    Abstract: Described is an apparatus which comprises: a first voltage regulator (VR) coupled to first one or more inductors, the first VR is to provide power to a first power domain; and a second VR coupled to second one or more inductors at least one of which is inductively coupled to at least one of the first one or more inductors, the second VR is to provide power to a second power domain separate from the first power domain, wherein there is a non-zero phase angle offset between switching transistors of the first VR relative to the second VR.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: December 10, 2019
    Assignee: Intel Corporation
    Inventors: Krishna Bharath, Srikrishnan Venkataraman, William J. Lambert, Michael J. Hill, Alexander Slepoy, Dong Zhong, Kaladhar Radhakrishnan, Hector A. Aguirre Diaz, Jonathan P. Douglas
  • Patent number: 10404152
    Abstract: Some embodiments include apparatuses and methods of using such apparatuses. One of the apparatuses includes voltage regulators in an integrated circuit device, and a frequency control block and a module included in the integrated circuit device. Each of the voltage regulators includes a current sensor. The frequency control block operates to provide a clock signal to each of the voltage regulators. The clock signal has a frequency based on digital information. The module operates to receive a current from the current sensor of each of the voltage regulators and provides the digital information to the frequency control block to control the frequency of the clock signal. The digital information has a value based on the current from each of the current sensors.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 3, 2019
    Assignee: Intel Corporation
    Inventors: Srikrishnan Venkataraman, Sreedhar Narayanaswamy, Jonathan P. Douglas, Chih-Chung Jonathan Wei, Ankush Varma, Narayanan Natarajan
  • Publication number: 20190103801
    Abstract: Some embodiments include apparatuses and methods of using such apparatuses. One of the apparatuses includes voltage regulators in an integrated circuit device, and a frequency control block and a module included in the integrated circuit device. Each of the voltage regulators includes a current sensor. The frequency control block operates to provide a clock signal to each of the voltage regulators. The clock signal has a frequency based on digital information. The module operates to receive a current from the current sensor of each of the voltage regulators and provides the digital information to the frequency control block to control the frequency of the clock signal. The digital information has a value based on the current from each of the current sensors.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: Srikrishnan Venkataraman, Sreedhar Narayanaswamy, Jonathan P. Douglas, Chih-Chung Jonathan Wei, Ankush Varma, Narayanan Natarajan
  • Patent number: 10033402
    Abstract: Described is an analog to digital converter (ADC) which comprises: a sigma-delta modulator to receive an analog signal, the sigma-delta modulator operable to perform chopping to cancel common-mode noise; and one or more counters coupled to the sigma-delta modulator to generate a digital code representative of the analog signal.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: July 24, 2018
    Assignee: Intel Corporation
    Inventors: Takao Oshita, George L. Geannopoulos, David E. Duarte, J. Keith Hodgson, James S. Ayers, Avner Kornfeld, Jonathan P. Douglas
  • Publication number: 20180101207
    Abstract: Described is an apparatus which comprises: a first voltage regulator (VR) coupled to first one or more inductors, the first VR is to provide power to a first power domain; and a second VR coupled to second one or more inductors at least one of which is inductively coupled to at least one of the first one or more inductors, the second VR is to provide power to a second power domain separate from the first power domain, wherein there is a non-zero phase angle offset between switching transistors of the first VR relative to the second VR.
    Type: Application
    Filed: September 5, 2017
    Publication date: April 12, 2018
    Inventors: Krishna Bharath, Srikrishnan Venkataraman, William J. Lambert, Michael J. Hill, Alexander Slepoy, Dong Zhong, Kaladhar Radhakrishnan, Hector A. Aguirre Diaz, Jonathan P. Douglas
  • Patent number: 9753510
    Abstract: Described is an apparatus which comprises: a first voltage regulator (VR) coupled to first one or more inductors, the first VR is to provide power to a first power domain; and a second VR coupled to second one or more inductors at least one of which is inductively coupled to at least one of the first one or more inductors, the second VR is to provide power to a second power domain separate from the first power domain, wherein there is a non-zero phase angle offset between switching transistors of the first VR relative to the second VR.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: September 5, 2017
    Assignee: Intel Corporation
    Inventors: Krishna Bharath, Srikrishnan Venkataraman, William J. Lambert, Michael J. Hill, Alexander Slepoy, Dong Zhong, Kaladhar Radhakrishnan, Hector A. Aguirre Diaz, Jonathan P. Douglas
  • Patent number: 9696350
    Abstract: Described is an apparatus having a non-linear control to manage power supply droop at an output of a voltage regulator. The apparatus comprises: a first inductor for coupling to a load; a capacitor, coupled to the first inductor, and for coupling to the load; a first high-side switch couple to the first inductor; a first low-side switch coupled to the first inductor; a bridge controller to control when to turn on and off the first high-side and first low-side switches; and a non-linear control (NLC) unit to monitor output voltage on the load, and to cause the bridge controller to turn on the first high-side switch and turn off the first low-side switch when a voltage droop is detected on the load.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: July 4, 2017
    Assignee: Intel Corporation
    Inventors: Edward A. Burton, Gerhard Schrom, Michael W. Rogers, Alexander Lyakhov, Ravi Sankar Vunnam, Jonathan P. Douglas, Fabrice Paillet, J. Keith Hodgson, William Dawson Kesling, Chiu Keung Tang, Narayanan Raghuraman, Narayanan Natarajan, Samie Samaan, George Geannopoulos
  • Publication number: 20170060205
    Abstract: Described is an apparatus which comprises: a first voltage regulator (VR) coupled to first one or more inductors, the first VR is to provide power to a first power domain; and a second VR coupled to second one or more inductors at least one of which is inductively coupled to at least one of the first one or more inductors, the second VR is to provide power to a second power domain separate from the first power domain, wherein there is a non-zero phase angle offset between switching transistors of the first VR relative to the second VR.
    Type: Application
    Filed: August 26, 2015
    Publication date: March 2, 2017
    Inventors: Krishna Bharath, Srikrishnan Venkataraman, William J. Lambert, Michael J. Hill, Alexander Slepoy, Dong Zhong, Kaladhar Radhakrishnan, Hector A. Aguirre Diaz, Jonathan P. Douglas
  • Publication number: 20170005670
    Abstract: Described is an analog to digital converter (ADC) which comprises: a sigma-delta modulator to receive an analog signal, the sigma-delta modulator operable to perform chopping to cancel common-mode noise; and one or more counters coupled to the sigma-delta modulator to generate a digital code representative of the analog signal.
    Type: Application
    Filed: September 14, 2016
    Publication date: January 5, 2017
    Inventors: Takao Oshita, George L. Geannopoulos, David E. Duarte, J. Keith Hodgson, James S. Ayers, Avner Kornfeld, Jonathan P. Douglas
  • Patent number: 9520895
    Abstract: Described is an analog to digital converter (ADC) which comprises: a sigma-delta modulator to receive an analog signal, the sigma-delta modulator operable to perform chopping to cancel common-mode noise; and one or more counters coupled to the sigma-delta modulator to generate a digital code representative of the analog signal.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: December 13, 2016
    Assignee: Intel Corporation
    Inventors: Takao Oshita, George L. Geannopoulos, David E. Duarte, J Keith Hodgson, James S. Ayers, Avner Kornfeld, Jonathan P. Douglas
  • Publication number: 20160233879
    Abstract: Described is an analog to digital converter (ADC) which comprises: a sigma-delta modulator to receive an analog signal, the sigma-delta modulator operable to perform chopping to cancel common-mode noise; and one or more counters coupled to the sigma-delta modulator to generate a digital code representative of the analog signal.
    Type: Application
    Filed: May 6, 2015
    Publication date: August 11, 2016
    Inventors: Takao Oshita, George L. Geannopoulos, David E. Duarte, J. Keith Hodgson, James S. Ayers, Avner Kornfeld, Jonathan P. Douglas
  • Patent number: 9065470
    Abstract: Described is an analog to digital converter (ADC) which comprises: a sigma-delta modulator to receive an analog signal, the sigma-delta modulator operable to perform chopping to cancel common-mode noise; and one or more counters coupled to the sigma-delta modulator to generate a digital code representative of the analog signal.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: June 23, 2015
    Assignee: Intel Corporation
    Inventors: Takao Oshita, George L. Geannopoulos, David E. Duarte, J Keith Hodgson, James S. Ayers, Avner Kornfeld, Jonathan P. Douglas
  • Patent number: 9048851
    Abstract: Described is an apparatus for providing spread-spectrum to a clock signal. The apparatus comprises: an oscillator to generate an output clock signal, the oscillator to receive an adjustable reference signal to adjust frequency of the output clock signal; a first circuit to provide a first signal indicative of a center frequency of the output clock signal; a second circuit to generate a switching waveform to provide spread-spectrum for the output clock signal; and a third circuit, coupled to the first and second circuits, to provide the adjustable reference signal according to the first signal and the switching waveform.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: June 2, 2015
    Assignee: Intel Corporation
    Inventors: Gerhard Schrom, Alexander Lyakhov, Michael W. Rogers, Dawson W. Kesling, Jonathan P. Douglas, J. Keith Hodgson
  • Publication number: 20140266119
    Abstract: Described is an apparatus having a non-linear control to manage power supply droop at an output of a voltage regulator. The apparatus comprises: a first inductor for coupling to a load; a capacitor, coupled to the first inductor, and for coupling to the load; a first high-side switch couple to the first inductor; a first low-side switch coupled to the first inductor; a bridge controller to control when to turn on and off the first high-side and first low-side switches; and a non-linear control (NLC) unit to monitor output voltage on the load, and to cause the bridge controller to turn on the first high-side switch and turn off the first low-side switch when a voltage droop is detected on the load.
    Type: Application
    Filed: May 31, 2013
    Publication date: September 18, 2014
    Inventors: Edward A. BURTON, Gerhard SCHROM, Michael W. ROGERS, Alexander LYAKHOV, Ravi Sankar VUNNAM, Jonathan P. DOUGLAS, Fabrice PAILLET, J. Keith HODGSON