Patents by Inventor Jonathan R. Bruzzi

Jonathan R. Bruzzi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8094081
    Abstract: A dual-band antenna is provided that combines two normally disparate communications modes into a single compact aperture minimizing overall mass and volume, while maintaining high performance efficiency and reciprocity of each individual mode. The antenna is compatible with both optical (near-IR/visible) and RF (microwave/millimeter-wave) transceiver subsystems for high bandwidth communications, applicable primarily to long- to extremely long-range (space-to-ground) link distances. The optical link provides high bandwidth while the RF provides a lower data-rate weather backup, accommodation for traditional navigation techniques, and assistance in cueing the extremely tight optical beam by matching the RF beamwidth to an optical fine-steering mechanism field-of-regard. The configuration is built around a near-diffraction-limited high performance primary mirror shared by both a direct-fed RF antenna design and a Cassegrain optical telescope.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: January 10, 2012
    Assignee: The Johns Hopkins University
    Inventors: Jonathan R. Bruzzi, Bradley G. Boone
  • Publication number: 20120002973
    Abstract: A dual-band antenna is provided that combines two normally disparate communications modes into a single compact aperture minimizing overall mass and volume, while maintaining high performance efficiency and reciprocity of each individual mode. The antenna is compatible with both optical (near-IR/visible) and RF (microwave/millimeter-wave) transceiver subsystems for high bandwidth communications, applicable primarily to long- to extremely long-range (space-to-ground) link distances. The optical link provides high bandwidth while the RF provides a lower data-rate weather backup, accommodation for traditional navigation techniques, and assistance in cueing the extremely tight optical beam by matching the RF beamwidth to an optical fine-steering mechanism field-of-regard. The configuration is built around a near-diffraction-limited high performance primary mirror shared by both a direct-fed RF antenna design and a Cassegrain optical telescope.
    Type: Application
    Filed: October 25, 2007
    Publication date: January 5, 2012
    Inventors: Jonathan R. Bruzzi, Bradley G. Boone