Patents by Inventor Jong-hyun Ahn

Jong-hyun Ahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150237711
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Application
    Filed: May 7, 2015
    Publication date: August 20, 2015
    Inventors: John A. ROGERS, Yonggang HUANG, Heung Cho KO, Mark STOYKOVICH, Won Mook CHOI, Jizhou SONG, Jong Hyun AHN, Dae Hyeong KIM
  • Patent number: 9098162
    Abstract: A touch panel comprising a first substrate; a second substrate disposed facing the first substrate; a first conductive layer disposed on at least one surface of the first substrate; a second conductive layer disposed on at least one surface of the second substrate; first electrodes electrically connected to the first conductive layer; and second electrodes electrically connected to the second conductive layer, wherein at least one of the first conductive layer and the second conductive layer comprises graphene.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: August 4, 2015
    Assignees: SAMSUNG TECHWIN CO., LTD., RESEARCH & BUSINESS FOUNDATION
    Inventors: Jong-hyun Ahn, Byung-Hee Hong, Young-Bin Lee, Su-Kang Bae, Hyeong-Keun Kim
  • Publication number: 20150191356
    Abstract: A graphene sheet and a method of manufacturing the graphene sheet are provided. The method includes: growing a graphene sheet on a graphene growth support by applying carbon sources and heat to the graphene growth support, the graphene growth support including a carbonization catalyst; and forming at least one ripple on the graphene sheet by cooling at least one of the graphene growth support and the graphene sheet, wherein the graphene growth support and the graphene sheet have different thermal expansion coefficients.
    Type: Application
    Filed: March 20, 2015
    Publication date: July 9, 2015
    Applicants: SAMSUNG TECHWIN CO., LTD., SUNGKYUNKWAN UNIVERSITY FOUNDATION FOR CORPORATE COLLABORATION
    Inventors: Keun-soo KIM, Jong-hyun AHN, Byung-hee HONG
  • Publication number: 20150181700
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Application
    Filed: October 22, 2014
    Publication date: June 25, 2015
    Inventors: John A ROGERS, Yonggang HUANG, Heung Cho KO, Mark STOYKOVICH, Won Mook CHOI, Jizhou SONG, Jong Hyun AHN, Dae Hyeong KIM
  • Patent number: 8992807
    Abstract: A graphene sheet and a method of manufacturing the graphene sheet are provided. The method includes: growing a graphene sheet on a graphene growth support by applying carbon sources and heat to the graphene growth support, the graphene growth support including a carbonization catalyst; and forming at least one ripple on the graphene sheet by cooling at least one of the graphene growth support and the graphene sheet, wherein the graphene growth support and the graphene sheet have different thermal expansion coefficients.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: March 31, 2015
    Assignees: Samsung Techwin Co., Ltd., Sungkyunkwan University Foundation for Corporate Collaboration
    Inventors: Keun-soo Kim, Jong-hyun Ahn, Byung-hee Hong
  • Publication number: 20140373898
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Application
    Filed: March 13, 2014
    Publication date: December 25, 2014
    Applicants: Semprius, Inc., The Board of Trustees of the University of Illinois
    Inventors: John ROGERS, Ralph NUZZO, Matthew MEITL, Etienne MENARD, Alfred BACA, Michael MOTALA, Jong-Hyun AHN, Sang-Il PARK, Chang-Jae YU, Heung Cho KO, Mark STOYKOVICH, Jongseung YOON
  • Patent number: 8905772
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: December 9, 2014
    Assignees: The Board of Trustees of the University of Illinois, Northwestern University
    Inventors: John A Rogers, Yonggang Huang, Heung Cho Ko, Mark Stoykovich, Won Mook Choi, Jizhou Song, Jong Hyun Ahn, Dae Hyeong Kim
  • Publication number: 20140140020
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Application
    Filed: August 23, 2013
    Publication date: May 22, 2014
    Inventors: John A. ROGERS, Yonggang HUANG, Heung Cho KO, Mark STOYKOVICH, Won Mook CHOI, Jizhou SONG, Jong Hyun AHN, Dae Hyeong KIM
  • Patent number: 8729614
    Abstract: The present disclosure relates to a flexible nonvolatile ferroelectric memory device, a 1T-1R (1Transistor-1Resistor) flexible ferroelectric memory device, and a manufacturing method for the same.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: May 20, 2014
    Assignee: Sungkyunkwan University Foundation for Corporate Collaboration
    Inventors: Jong-Hyun Ahn, Jonghyun Rho
  • Patent number: 8722458
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: May 13, 2014
    Assignees: The Board of Trustees of the University of Illinois, Semprius, Inc.
    Inventors: John Rogers, Ralph Nuzzo, Matthew Meitl, Etienne Menard, Alfred J. Baca, Michael Motala, Jong-Hyun Ahn, Sang-Il Park, Chang-Jae Yu, Heung Cho Ko, Mark Stoykovich, Jongseung Yoon
  • Patent number: 8653631
    Abstract: Provided are a transferred thin film transistor and a method of manufacturing the same. The method includes: forming a source region and a drain region that extend in a first direction in a first substrate and a channel region between the source region and the drain region; forming trenches that extend in a second direction in the first substrate to define an active layer between the trenches, the second direction intersecting the first direction; separating the active layer between the trenches from the first substrate by performing an anisotropic etching process on the first substrate inside the trenches; attaching the active layer on a second substrate; and forming a gate electrode in the first direction on the channel region of the active layer.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: February 18, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jae Bon Koo, Jong-Hyun Ahn, Seung Youl Kang, Hasan Musarrat, In-Kyu You, Kyoung Ik Cho
  • Publication number: 20140017160
    Abstract: A method and an apparatus for synthesizing graphene. The method includes loading catalyst metals into a chamber in the horizontal direction or the vertical direction; increasing sizes of grains of the catalyst metals by heating the catalyst metals; raising a temperature inside the chamber while providing a vapor carbon source in the catalyst metals; and forming graphene by cooling the catalyst metals.
    Type: Application
    Filed: January 30, 2012
    Publication date: January 16, 2014
    Applicants: RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY, SAMSUNG TECHWIN CO., LTD.
    Inventors: Young-Il Song, Hyeong-Keun Kim, Byung-Hee Hong, Jong-Hyun Ahn
  • Publication number: 20130285970
    Abstract: A touch sensor capable of specifying a touch position and/or a degree of a touch pressure by using graphene as an electrode and/or a strain gauge, and more particular, a touch sensor capable of simultaneously detecting a pressure and a position by means of change in resistance by using graphene is provided.
    Type: Application
    Filed: December 23, 2011
    Publication date: October 31, 2013
    Applicant: GRAPHENE SQUARE INC.
    Inventors: Jong-Hyun Ahn, Byung Hee Hong, Young Bin Lee, Su Kang Bae, Hyeong Keun Kim
  • Patent number: 8552299
    Abstract: Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: October 8, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Yonggang Huang, Heung Cho Ko, Mark Stoykovich, Won Mook Choi, Jizhou Song, Jong Hyun Ahn, Dae Hyeong Kim
  • Publication number: 20130187097
    Abstract: The present invention relates to a method for forming graphene at a low temperature, to a method for direct transfer of graphene using same, and to a graphene sheet. The method for forming graphene at a low temperature comprises supplying a carbon-source-containing gas to a metal catalyst layer for graphene growth formed on a substrate, and forming graphene at a low temperature of 500° C. or less by means of inductively coupled plasma-chemical vapor deposition (ICP-CVD).
    Type: Application
    Filed: July 15, 2011
    Publication date: July 25, 2013
    Applicants: SAMSUNG TECHWIN CO., LTD., SUNGKYUNKWAN UNIVERSITY FOUNDATION FOR CORPORATE COLLABORATION
    Inventors: Byung Hee Hong, Jong-Hyun Ahn, Ji Beom Yoo, Su Kang Bae, Myung Hee Jung, Houk Jang, Youngbin Lee, Sang Jin Kim
  • Publication number: 20130130011
    Abstract: THE PRESENT INVENTION PROVIDES A METHOD FOR PREPARING GRAPHENE BY PROVIDING A REACTION GAS INCLUDING A CARBON SOURCE AND HEAT ONTO A SUBSTRATE, AND REACTING THE SAME TO FORM A GRAPHENE ON THE SUBSTRATE, A GRAPHENE SHEET FORMED BY THE METHOD, AND A DEVICE USING THE SAME.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 23, 2013
    Applicant: SUNGKYUNKWAN UNIVERSITY FPUNDATION FOR CORPORATE COLLABORATION
    Inventors: Byung Hee Hong, Jong-Hyun Ahn, Su Kang Bae, Myung Hee Jung, Hye Ri Kim, Sang Jin Kim
  • Patent number: 8431103
    Abstract: Provided are a method of manufacturing graphene, graphene manufactured by the method, a conductive thin film including the graphene, a transparent electrode comprising the graphene, and a radiating or heating device comprising the graphene. The method includes: preparing a graphene member including a base member, a hydrophilic oxide layer formed on the base member, a hydrophobic metal catalyst layer formed on the oxide layer, and graphene grown on the metal catalyst layer; applying water to the graphene member; separating the metal catalyst layer from the oxide layer; and removing the metal catalyst layer using an etching process.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: April 30, 2013
    Assignees: Samsung Techwin Co., Ltd., Sungkyunkwan University Foundation for Corporate
    Inventors: Young-il Song, Jong-hyun Ahn, Young-bin Lee, Byung-hee Hong
  • Patent number: 8404532
    Abstract: Provided are a transferred thin film transistor and a method of manufacturing the same. The method includes: forming a source region and a drain region that extend in a first direction in a first substrate and a channel region between the source region and the drain region; forming trenches that extend in a second direction in the first substrate to define an active layer between the trenches, the second direction intersecting the first direction; separating the active layer between the trenches from the first substrate by performing an anisotropic etching process on the first substrate inside the trenches; attaching the active layer on a second substrate; and forming a gate electrode in the first direction on the channel region of the active layer.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: March 26, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jae Bon Koo, Jong-Hyun Ahn, Seung Youl Kang, Hasan Musarrat, In-Kyu You, Kyoung Ik Cho
  • Publication number: 20130022811
    Abstract: The present disclosure relates to a stable graphene film, a preparing method of the stable graphene film, a graphene transparent electrode including the stable graphene film, and a touch screen including the stable graphene film.
    Type: Application
    Filed: June 25, 2012
    Publication date: January 24, 2013
    Applicant: RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
    Inventors: Jong-Hyun AHN, Byung Hee HONG, Chao YAN
  • Publication number: 20120319976
    Abstract: A touch panel comprising a first substrate; a second substrate disposed facing the first substrate; a first conductive layer disposed on at least one surface of the first substrate; a second conductive layer disposed on at least one surface of the second substrate; first electrodes electrically connected to the first conductive layer; and second electrodes electrically connected to the second conductive layer, wherein at least one of the first conductive layer and the second conductive layer comprises graphene.
    Type: Application
    Filed: February 1, 2011
    Publication date: December 20, 2012
    Applicants: RESEARCH & BUSINESS FOUNDATION OF SUNGKYUNKWAN UNIVERSITY, SAMSUNG TECHWIN CO., LTD.
    Inventors: Jong-hyun Ahn, Byung-Hee Hong, Young-Bin Lee, Su-Kang Bae, Hyeong-Keun Kim