Patents by Inventor Joon-Ki Lee

Joon-Ki Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10805224
    Abstract: A parallel scheduling apparatus includes an information managing unit generating a first request information for scheduling, a first scheduling unit performing first scheduling and then generating first matching information on the basis of the first request information, and a second scheduling unit performing second scheduling on the basis of the first request information and the first matching information. The parallel scheduling has an advantage of improving the scheduling performance and lowering the implementation complexity, ensuring low delay and transmission fairness among VOQs at low input traffic, being applied to all scheduling algorithms that perform existing multi-iterations, and providing efficient scheduling in a packet switch having a long RTT time or having a very short time slot or cell size, such as an optical switch.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: October 13, 2020
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Kyeong Eun Han, Dae Ub Kim, Chan Sung Park, Jong Tae Song, Kwang Joon Kim, Joon Ki Lee
  • Publication number: 20200292759
    Abstract: An optical connection apparatus includes a position fixing portion configured to fix optical circuits each having a different end portion, while interposing a connection member that is optically imprintable between the optical circuits, and an optical-imprinting portion configured to emit light to the connection member to form a three-dimensional (3D) optical waveguide in the connection member that connects the optical circuits to each other.
    Type: Application
    Filed: November 4, 2019
    Publication date: September 17, 2020
    Inventors: Sun Hyok CHANG, Joon Ki LEE
  • Publication number: 20200021363
    Abstract: An optical transmitting module includes: light sources configured to output optical signals, an optical multiplexer configured to multiplex the optical signals output from the light sources, a collimating lens configured to convert an optical signal output from the optical multiplexer to a form of parallel beam, a package inside which the light sources, the optical multiplexer, and the collimating lens are provided, and an optical isolator disposed on one inner surface of the package, in which the optical signals output from the light sources are multiplexed into a single optical signal through the optical multiplexer disposed inside the package, and the single optical signal passes through the collimating lens and is then optically coupled to an optical fiber stub in a receptacle through a focusing lens disposed outside the package to be output externally.
    Type: Application
    Filed: December 3, 2018
    Publication date: January 16, 2020
    Inventors: Sae-Kyoung KANG, Joon Young HUH, Joon Ki LEE
  • Patent number: 10523333
    Abstract: An optical signal transmission apparatus generates a multi-level optical signal from a multi-level electric signal. The optical signal transmission apparatus detects, based on a supervisory signal generated from an optical signal, an electric-to-optical (E/O) conversion characteristic of an E/O converter configured to convert an electric signal into an optical signal. For example, when the E/O converter generates a multi-level optical signal from a multi-level electric signal based on a bias signal, the optical signal transmission apparatus determines a correspondence relationship between the bias signal and the optical signal. The optical signal transmission apparatus adjusts a use range of intensities of the bias signal based on the determined correspondence relationship so that the E/O converter may linearly operate.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 31, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jie Hyun Lee, Sun Hyok Chang, Joon Young Huh, Sae-Kyoung Kang, Joon Ki Lee
  • Patent number: 10516487
    Abstract: An optical transmitting module includes: light sources configured to output optical signals, an optical multiplexer configured to multiplex the optical signals output from the light sources, a collimating lens configured to convert an optical signal output from the optical multiplexer to a form of parallel beam, a package inside which the light sources, the optical multiplexer, and the collimating lens are provided, and an optical isolator disposed on one inner surface of the package, in which the optical signals output from the light sources are multiplexed into a single optical signal through the optical multiplexer disposed inside the package, and the single optical signal passes through the collimating lens and is then optically coupled to an optical fiber stub in a receptacle through a focusing lens disposed outside the package to be output externally.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: December 24, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sae-Kyoung Kang, Joon Young Huh, Joon Ki Lee
  • Patent number: 10511400
    Abstract: An optical multiplexer including an optical waveguide block including a plurality of waveguides for adjusting an optical path of the plurality of optical signals. Optical signals generated in light sources having different wavelengths are input to ports of one side that is an input end of the optical waveguide block, propagated through waveguides connected to the ports, and output to ports of another side that is an output end of the optical wavelength block. Intervals between the waveguides decrease in a direction from the input end to the output end. Intervals between the ports of the input end are smaller than intervals between the ports of the output end. The optical waveguide block has a structure in which at least one layer having at least one waveguide is laminated.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: December 17, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Joon Young Huh, Sae-Kyoung Kang, Joon Ki Lee
  • Patent number: 10447405
    Abstract: An optical receiver includes: an optical demultiplexer to demultiplex an optical signal in which a plurality of wavelengths is multiplexed and divide the optical signal into optical signals corresponding to the plurality of wavelengths, respectively; a reflector to change a progress direction of the divided optical signals; an optical coupling lens including, in an array form, light transmission lenses through which the divided optical signals are transmitted, respectively; a plurality of photodetectors to mount on a photodiode (PD) substrate provided on the optical coupling lens, receive the divided optical signals that are transmitted through the light transmission lenses of the optical coupling lens, respectively, and convert the received optical signals to electrical signals; and a plurality of trans impedance amplifiers provided at desired intervals to electrically connect to the plurality of photodetectors through wire bonding and amplify the received plurality of electrical signals to be a desired magn
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: October 15, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sae-Kyoung Kang, Joon Young Huh, Joon Ki Lee, Jie Hyun Lee
  • Patent number: 10432341
    Abstract: A transmitter for transmitting an optical signal in an optical communication system includes a plurality of light sources configured to output optical signals; a plurality of first optical couplers configured to multiplex the optical signals, which are output from the plurality of light sources, to generate a first optical signal, and output the first optical signal through a first output port and a second output port of each of the plurality of first optical couplers; a first monitoring unit configured to monitor the first optical signal which is output through the second output port of each of the plurality of first optical couplers; and a controller configured to control an optical output of each of the plurality of light sources on the basis of a result of the monitoring.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: October 1, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sae Kyoung Kang, Joon Ki Lee, Joon Young Huh
  • Patent number: 10425183
    Abstract: An optical transmission method includes outputting a first light based on a first electronic signal, outputting a second light based on a second electronic signal, and polarizing and combining the first light and the second light, and outputting the polarized and combined first and second lights to an optical fiber.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: September 24, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sanghwa Yoo, Sae-Kyoung Kang, Joon Ki Lee
  • Publication number: 20190229828
    Abstract: An optical multiplexer including an optical waveguide block including a plurality of waveguides for adjusting an optical path of the plurality of optical signals. Optical signals generated in light sources having different wavelengths are input to ports of one side that is an input end of the optical waveguide block, propagated through waveguides connected to the ports, and output to ports of another side that is an output end of the optical wavelength block. Intervals between the waveguides decrease in a direction from the input end to the output end. Intervals between the ports of the input end are smaller than intervals between the ports of the output end. The optical waveguide block has a structure in which at least one layer having at least one waveguide is laminated.
    Type: Application
    Filed: September 7, 2018
    Publication date: July 25, 2019
    Inventors: Joon Young HUH, Sae-Kyoung KANG, Joon Ki LEE
  • Patent number: 10359572
    Abstract: Provided is a device and method for detecting an optical signal. The optical signal detecting device may include an optical de-multiplexer configured to de-multiplex an input optical signal to optical signals of different wavelengths; an optical coupling lens configured to allow the optical signals of different wavelengths to be incident; an optical signal reflector configured to reflect the optical signals of different wavelengths emitted from the optical couple lens; and an optical detector configured to detect the reflected optical signals of different wavelengths.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: July 23, 2019
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sae-Kyoung Kang, Joon Ki Lee, Jie Hyun Lee, Joon Young Huh
  • Publication number: 20190182173
    Abstract: A parallel scheduling apparatus includes an information managing unit generating a first request information for scheduling, a first scheduling unit performing first scheduling and then generating first matching information on the basis of the first request information, and a second scheduling unit performing second scheduling on the basis of the first request information and the first matching information. The parallel scheduling has an advantage of improving the scheduling performance and lowering the implementation complexity, ensuring low delay and transmission fairness among VOQs at low input traffic, being applied to all scheduling algorithms that perform existing multi-iterations, and providing efficient scheduling in a packet switch having a long RTT time or having a very short time slot or cell size, such as an optical switch.
    Type: Application
    Filed: September 5, 2018
    Publication date: June 13, 2019
    Inventors: Kyeong Eun HAN, Dae Ub KIM, Chan Sung PARK, Jong Tae SONG, Kwang Joon KIM, Joon Ki LEE
  • Publication number: 20190165867
    Abstract: An optical receiver and a method of controlling the optical receiver. The method may include setting, by a controller, a dispersion value of a dispersion compensator to compensate for a dispersion of an optical signal received through an optical fiber, compensating, by the dispersion compensator, for the dispersion of the optical signal based on the set dispersion value, performing, by the controller, an error correction with respect to the optical signal of which the dispersion is compensated and verifying a number of bit errors, and resetting, by the controller, the dispersion value of the dispersion compensator based on the verified number of bit errors.
    Type: Application
    Filed: June 21, 2018
    Publication date: May 30, 2019
    Inventors: Sun Hyok CHANG, Hun Sik KANG, Joon Ki LEE, Jie Hyun LEE
  • Publication number: 20190158188
    Abstract: An optical signal transmission apparatus generates a multi-level optical signal from a multi-level electric signal. The optical signal transmission apparatus detects, based on a supervisory signal generated from an optical signal, an electric-to-optical (E/O) conversion characteristic of an E/O converter configured to convert an electric signal into an optical signal. For example, when the E/O converter generates a multi-level optical signal from a multi-level electric signal based on a bias signal, the optical signal transmission apparatus determines a correspondence relationship between the bias signal and the optical signal. The optical signal transmission apparatus adjusts a use range of intensities of the bias signal based on the determined correspondence relationship so that the E/O converter may linearly operate.
    Type: Application
    Filed: June 29, 2018
    Publication date: May 23, 2019
    Inventors: Jie Hyun LEE, Sun Hyok CHANG, Joon Young HUH, Sae-Kyoung KANG, Joon Ki LEE
  • Publication number: 20190115720
    Abstract: An optical signal transmission apparatus including a temperature-independent wavelength tunable laser includes a distributed Bragg reflector (DBR) laser including a DBR mirror region configured to convert a wavelength of an output optical signal based on a first supply current, and an optical gain region configured to control a gain of the output optical signal based on a second supply current, a semiconductor optical amplifier (SOA) configured to amplify an optical signal output from the DBR laser based on a third supply current, and a processor configured to supply a compensation current to the optical gain region based on a wavelength conversion request, to suppress a wavelength overshoot due to a carrier effect caused by the first supply current provided to the DBR mirror region.
    Type: Application
    Filed: July 6, 2018
    Publication date: April 18, 2019
    Inventors: Sanghwa YOO, Kwangjoon KIM, Joon Ki LEE
  • Publication number: 20190103921
    Abstract: An optical receiver includes: an optical demultiplexer to demultiplex an optical signal in which a plurality of wavelengths is multiplexed and divide the optical signal into optical signals corresponding to the plurality of wavelengths, respectively; a reflector to change a progress direction of the divided optical signals; an optical coupling lens including, in an array form, light transmission lenses through which the divided optical signals are transmitted, respectively; a plurality of photodetectors to mount on a photodiode (PD) substrate provided on the optical coupling lens, receive the divided optical signals that are transmitted through the light transmission lenses of the optical coupling lens, respectively, and convert the received optical signals to electrical signals; and a plurality of trans impedance amplifiers provided at desired intervals to electrically connect to the plurality of photodetectors through wire bonding and amplify the received plurality of electrical signals to be a desired magn
    Type: Application
    Filed: June 29, 2018
    Publication date: April 4, 2019
    Inventors: Sae-Kyoung KANG, Joon Young HUH, Joon Ki LEE, Jie Hyun LEE
  • Publication number: 20190052394
    Abstract: An optical transmission method includes outputting a first light based on a first electronic signal, outputting a second light based on a second electronic signal, and polarizing and combining the first light and the second light, and outputting the polarized and combined first and second lights to an optical fiber.
    Type: Application
    Filed: June 18, 2018
    Publication date: February 14, 2019
    Inventors: Sanghwa YOO, Sae-Kyoung KANG, Joon Ki LEE
  • Publication number: 20190020438
    Abstract: A transmitter for transmitting an optical signal in an optical communication system includes a plurality of light sources configured to output optical signals; a plurality of first optical couplers configured to multiplex the optical signals, which are output from the plurality of light sources, to generate a first optical signal, and output the first optical signal through a first output port and a second output port of each of the plurality of first optical couplers; a first monitoring unit configured to monitor the first optical signal which is output through the second output port of each of the plurality of first optical couplers; and a controller configured to control an optical output of each of the plurality of light sources on the basis of a result of the monitoring.
    Type: Application
    Filed: July 12, 2018
    Publication date: January 17, 2019
    Inventors: Sae Kyoung KANG, Joon Ki LEE, Joon Young HUH
  • Patent number: 10110338
    Abstract: An optical signal detecting apparatus and method. The optical signal detecting apparatus includes an optical demultiplexer configured to demultiplex an input optical signal into a first optical signal having a first band wavelength and a second optical signal having a second band wavelength, a first optical detector configured to detect the first optical signal, and a second optical detector configured to detect the second optical signal, and the optical demultiplexer, the first optical detector, and the second optical detector may be provided in a TO-CAN package.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: October 23, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sae-Kyoung Kang, Joon Young Huh, Joon Ki Lee, Jie Hyun Lee
  • Patent number: 10009669
    Abstract: An optical transmitter includes an optical modulator configured to modulate an optical signal, a dual-stage space switch configured to receive, as an input, the modulated optical signal from the optical modulator, and output ports configured to control light outputs based on an operation of the dual-stage space switch.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: June 26, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sanghwa Yoo, Joon Ki Lee