Patents by Inventor Jordan Ragos

Jordan Ragos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962095
    Abstract: Disclosed is a high frequency radiator for an antenna. The high frequency radiator is formed of two interlocking PCB stems on which a radiator plate is mounted. Disposed on each of the interlocking PCB stems are two combinations of a feeder metallic trace and an opposing metallic trace, disposed on opposite sides of the PCB stem and electrically coupled together by at least one via formed in the PCB stem and a solder point within the via. This configuration of high frequency radiator is considerably cheaper to manufacture compared to conventional designs and is less susceptible to impedance matching problems resulting from inconsistent solder joint dimensions.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: April 16, 2024
    Assignee: JOHN MEZZALINGUA ASSOCIATES, LLC
    Inventors: Taehee Jang, Niharika Tambe, Jordan Ragos, Niranjan Sundararjan
  • Patent number: 11804662
    Abstract: A telecommunications antenna comprising a plurality of unit cells each including at least one radiator which transmits RF energy within a bandwidth range which is a multiple of another radiator. The radiators are proximal to each other such that a resonant condition may be induced into the at least one radiator upon activation of the other radiator. At least one of the radiators is segmented into capacitively-connected radiator elements to suppress a resonance response therein upon activation of the other of the radiator.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: October 31, 2023
    Assignee: John Mezzalingua Associates, LLC
    Inventors: Taehee Jang, Lance D. Bamford, Kevin T. Le, Evan C. Wayton, Cody J. Anderson, Jordan Ragos, Niranjan Sundararajan
  • Patent number: 11721891
    Abstract: A sector antenna is provided comprising a base plate, a cable tower mounting to the base plate and at least one reflector mounting to the base plate and substantially parallel to the axis of the cable tower. The reflector includes a plurality of electrical components operative to transmit and receive telecommunications signals in an arcuate sector of the antenna. The reflector has an inwardly facing surface opposing the cable tower and an outwardly facing surface disposed away from the cable tower. Furthermore, a cable guide plate is interposed between the cable tower and the reflector such that apertures formed in the cable guide plate may provide a guide through which a conductor may pass for making an electrical connection to one of the electrical components along the outwardly-facing surface of the reflector. The cable guide plate apertures align with the reflector apertures and provide a guide to operators when assembling, maintaining and repairing the telecommunications antenna.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: August 8, 2023
    Assignee: JOHN MEZZALINGUA ASSOCIATES, LLC
    Inventors: Jordan Ragos, Karthik Janardhanan, Evan C. Wayton, Mario Scalzo
  • Publication number: 20220352626
    Abstract: A sector antenna is provided comprising a base plate, a cable tower mounting to the base plate and at least one reflector mounting to the base plate and substantially parallel to the axis of the cable tower. The reflector includes a plurality of electrical components operative to transmit and receive telecommunications signals in an arcuate sector of the antenna. The reflector has an inwardly facing surface opposing the cable tower and an outwardly facing surface disposed away from the cable tower. Furthermore, a cable guide plate is interposed between the cable tower and the reflector such that apertures formed in the cable guide plate may provide a guide through which a conductor may pass for making an electrical connection to one of the electrical components along the outwardly-facing surface of the reflector. The cable guide plate apertures align with the reflector apertures and provide a guide to operators when assembling, maintaining and repairing the telecommunications antenna.
    Type: Application
    Filed: October 21, 2020
    Publication date: November 3, 2022
    Applicant: John Mezzalingus Associates, LLC
    Inventors: Jordan Ragos, Karthik Janardhanan, Evan C. Wayton, Mario Scalzo
  • Patent number: 11283195
    Abstract: A multiband antenna has a plurality of first, unit cells and second unit cells. Each first unit cell has two high band radiator clusters and two low band radiators disposed approximately in the center of each of the high band radiator clusters. Each second unit cell has two high band radiator clusters and one low band radiator that is disposed between the two high band radiator clusters. The first unit cell is designed for a superior low band gain pattern, and the second unit cell is designed for a superior high band gain pattern. By selectively arranging the first and second unit cells in a specific heterogeneous pattern, the characteristics of the two unit cells may advantageously and constructively combine to form a high performance antenna gain pattern that is consistent across the low band and high band.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: March 22, 2022
    Assignee: JOHN MEZZALINGUA ASSOCIATES, LLC
    Inventors: Taehee Jang, Niranjan Sundararajan, Jordan Ragos
  • Publication number: 20210320430
    Abstract: A telecommunications antenna comprising a plurality of unit cells each including at least one radiator which transmits RF energy within a bandwidth range which is a multiple of another radiator. The radiators are proximal to each other such that a resonant condition may be induced into the at least one radiator upon activation of the other radiator. At least one of the radiators is segmented into capacitively-connected radiator elements to suppress a resonance response therein upon activation of the other of the radiator.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 14, 2021
    Applicant: John Mezzalingua Associates, LLC
    Inventors: Taehee Jang, Lance D. Bamford, Kevin T. Le, Evan C. Wayton, Cody J. Anderson, Jordan Ragos, Niranjan Sundararajan
  • Publication number: 20210218157
    Abstract: Disclosed is a high frequency radiator for an antenna. The high frequency radiator is formed of two interlocking PCB stems on which a radiator plate is mounted. Disposed on each of the interlocking PCB stems are two combinations of a feeder metallic trace and an opposing metallic trace, disposed on opposite sides of the PCB stem and electrically coupled together by at least one via formed in the PCB stem and a solder point within the via. This configuration of high frequency radiator is considerably cheaper to manufacture compared to conventional designs and is less susceptible to impedance matching problems resulting from inconsistent solder joint dimensions.
    Type: Application
    Filed: May 14, 2019
    Publication date: July 15, 2021
    Inventors: Taehee JANG, Niharika TAMBE, Jordan RAGOS, Niranjan SUNDARARJAN
  • Patent number: 11043752
    Abstract: A telecommunications antenna comprising a plurality of unit cells each including at least one radiator which transmits RF energy within a bandwidth range which is a multiple of another radiator. The radiators are proximal to each other such that a resonant condition may be induced into the at least one radiator upon activation of the other radiator. At least one of the radiators is segmented into capacitively-connected radiator elements to suppress a resonance response therein upon activation of the other of the radiator.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: June 22, 2021
    Assignee: JOHN MEZZALINGUA ASSOCIATES, LLC
    Inventors: Taehee Jang, Lance D. Bamford, Kevin T. Le, Evan C. Wayton, Cody J. Anderson, Jordan Ragos, Niranjan Sundararajan
  • Publication number: 20210050675
    Abstract: Disclosed is a multiband antenna that has a plurality of first unit cells and second unit cells. Each first unit cell has two high band radiator clusters and two low band radiators disposed approximately in the center of each of the high band radiator clusters. Each second unit cell has two high band radiator clusters and one low band radiator that is disposed between the two high band radiator clusters. The first unit cell is designed for a superior low band gain pattern, and the second unit cell is designed for a superior high band gain pattern. By selectively arranging the first and second unit cells in a specific heterogeneous pattern, the characteristics of the two unit cells may advantageously and constructively combine to form a high performance antenna gain pattern that is consistent across the low band and high band.
    Type: Application
    Filed: January 24, 2019
    Publication date: February 18, 2021
    Inventors: Taehee JANG, Niranjan SUNDARARAJAN, Jordan RAGOS
  • Publication number: 20200227836
    Abstract: A telecommunications antenna comprising a plurality of unit cells each including at least one radiator which transmits RF energy within a bandwidth range which is a multiple of another radiator. The radiators are proximal to each other such that a resonant condition may be induced into the at least one radiator upon activation of the other radiator. At least one of the radiators is segmented into capacitively-connected radiator elements to suppress a resonance response therein upon activation of the other of the radiator.
    Type: Application
    Filed: March 31, 2020
    Publication date: July 16, 2020
    Applicant: John Mezzalingua Associates, LLC
    Inventors: Taehee Jang, Lance D. Bamford, Kevin T. Le, Evan C. Wayton, Cody J. Anderson, Jordan Ragos, Niranjan Sundararajan
  • Patent number: 10680347
    Abstract: A telecommunications antenna comprising a plurality of unit cells each including at least one radiator which transmits RF energy within a bandwidth range which is a multiple of another radiator. The radiators are proximal to each other such that a resonant condition may be induced into the at least one radiator upon activation of the other radiator. At least one of the radiators is segmented into capacitively-connected radiator elements to suppress a resonance response therein upon activation of the other of the radiator.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: June 9, 2020
    Assignee: John Mezzalingua Associates, LLC
    Inventors: Taehee Jang, Lance D. Bamford, Kevin T. Le, Evan C. Wayton, Cody J. Anderson, Jordan Ragos, Niranjan Sundararajan
  • Patent number: 10320092
    Abstract: A unit cell for an antenna comprises a conductive ground plane, a low-band radiator, a pair of high-band radiators, and a conductive partition disposed along an edge intersecting a pitch axis of the conductive ground plane. The low-band radiator comprises a pair of orthogonally coupled dipoles each having a vertical stem portion and an arm portion. Each arm disposed in a plane orthogonal to the conductive ground plane. The arm portions, collectively and on-edge, produce an L-shaped radiator parallel to the conductive ground plane. Each of the high band radiators comprises a pair of cruciform radiators, each cruciform electrically connected to, spaced-apart from, and parallel to the conductive ground plane. The conductive partition isolates at least a portion of the RF energy transmitted by the low and high-band radiators.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: June 11, 2019
    Assignee: John Mezzalingua Associates, LLC
    Inventors: Kevin T. Le, Lance D. Bamford, Taehee Jang, Evan C. Wayton, Cody J. Anderson, Jordan Ragos, Niranjan Sundararajan
  • Publication number: 20180034164
    Abstract: A telecommunications antenna comprising a plurality of unit cells each including at least one radiator which transmits RF energy within a bandwidth range which is a multiple of another radiator. The radiators are proximal to each other such that a resonant condition may be induced into the at least one radiator upon activation of the other radiator. At least one of the radiators is segmented into capacitively-connected radiator elements to suppress a resonance response therein upon activation of the other of the radiator.
    Type: Application
    Filed: July 28, 2017
    Publication date: February 1, 2018
    Applicant: John Mezzalingua Associates, LLC
    Inventors: Taehee Jang, Lance D. Bamford, Kevin T. Le, Evan C. Wayton, Cody J. Anderson, Jordan Ragos, Niranjan Sundararajan
  • Publication number: 20180034161
    Abstract: A unit cell for an antenna comprises a conductive ground plane, a low-band radiator, a pair of high-band radiators, and a conductive partition disposed along an edge intersecting a pitch axis of the conductive ground plane. The low-band radiator comprises a pair of orthogonally coupled dipoles each having a vertical stem portion and an arm portion. Each arm disposed in a plane orthogonal to the conductive ground plane. The arm portions, collectively and on-edge, produce an L-shaped radiator parallel to the conductive ground plane. Each of the high band radiators comprises a pair of cruciform radiators, each cruciform electrically connected to, spaced-apart from, and parallel to the conductive ground plane. The conductive partition isolates at least a portion of the RF energy transmitted by the low and high-band radiators.
    Type: Application
    Filed: July 31, 2017
    Publication date: February 1, 2018
    Applicant: John Mezzalingua Associates, LLC
    Inventors: Kevin T. Le, Lance D. Bamford, Taehee Jang, Evan C. Wayton, Cody J. Anderson, Jordan Ragos, Niranjan Sundararajan