Patents by Inventor Jorgen Ostgaard Olsen

Jorgen Ostgaard Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10259742
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: April 16, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Patent number: 10197728
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber). The inclusion of the annular stress accommodation region allows for the formation of a large effective area optical fiber that exhibits low loss (i.e., <0.19 dB/km) in both the C-band and L-band transmission ranges.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 5, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Peter I Borel, Rasmus V. S. Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Man F Yan
  • Publication number: 20180251397
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Application
    Filed: February 2, 2018
    Publication date: September 6, 2018
    Applicant: OFS Fitel, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V.S Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Patent number: 9919955
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: March 20, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Man F Yan, Peter I Borel, Tommy Geisler, Rasmus V Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Benyuan Zhu
  • Patent number: 9658395
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber).
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: May 23, 2017
    Assignee: OFS FITEL, LLC
    Inventors: Peter I Borel, Rasmus V. S. Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Man F Yan
  • Publication number: 20170022094
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Application
    Filed: March 31, 2016
    Publication date: January 26, 2017
    Applicant: OFS Fitel, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Publication number: 20160170137
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber). The inclusion of the annular stress accommodation region allows for the formation of a large effective area optical fiber that exhibits low loss (i.e., <0.19 dB/km) in both the C-band and L-band transmission ranges.
    Type: Application
    Filed: November 12, 2015
    Publication date: June 16, 2016
    Inventors: Peter I. Borel, Rasmus V.S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Man F. Yan
  • Publication number: 20160109651
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (Le., forming a “low loss” optical fiber).
    Type: Application
    Filed: August 13, 2015
    Publication date: April 21, 2016
    Inventors: Peter I. Borel, Rasmus V.S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Man F. Yan
  • Publication number: 20140238080
    Abstract: A resistive heating element is used to fabricate a long-period grating mode converter. The resistive heating element creates a localized heating zone for creating an asymmetric perturbation at a periodic series of axial locations along the length of a segment of optical fiber that supports the propagation of both a symmetric mode and an asymmetric mode. In a further technique, a grating is written with an index contrast value that is higher than a selected optimum value. The heating element is then used to anneal the fiber segment so as to reduce the contrast value of the grating to the selected optimum value.
    Type: Application
    Filed: October 9, 2012
    Publication date: August 28, 2014
    Inventors: Lars Gruner-Nielsen, Jorgen Ostgaard Olsen
  • Patent number: 8434330
    Abstract: In a technique for fabricating a birefringent optical fiber, a preform rod is fabricated having a longitudinal axis, an outer peripheral surface, and a selected refractive index variation. At least one longitudinal groove is cut into the preform rod through its outer peripheral surface, wherein the at least one longitudinal groove has a cross sectional area equal to that of a respective birefringence-inducing stress element to be loaded into the groove, such that when the stress element is loaded into the groove, a portion of the stress element protrudes outside of the circumference of the preform. A respective birefringence-inducing stress element is loaded into the at least one longitudinal groove. A preform assembly is created by positioning the loaded preform rod within an overcladding tube. The preform assembly is drawn into optical fiber.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: May 7, 2013
    Assignee: OFS Fitel, LLC
    Inventor: Jorgen Ostgaard Olsen
  • Publication number: 20110097048
    Abstract: In a technique for fabricating a birefringent optical fiber, a preform rod is fabricated having a longitudinal axis, an outer peripheral surface, and a selected refractive index variation. At least one longitudinal groove is cut into the preform rod through its outer peripheral surface, wherein the at least one longitudinal groove has a cross sectional area equal to that of a respective birefringence-inducing stress element to be loaded into the groove, such that when the stress element is loaded into the groove, a portion of the stress element protrudes outside of the circumference of the preform. A respective birefringence-inducing stress element is loaded into the at least one longitudinal groove. A preform assembly is created by positioning the loaded preform rod within an overcladding tube. The preform assembly is drawn into optical fiber.
    Type: Application
    Filed: September 29, 2010
    Publication date: April 28, 2011
    Applicant: OFS FITEL, LLC
    Inventor: Jorgen Ostgaard Olsen
  • Patent number: 7425099
    Abstract: An air-clad optical fiber is provided having a core that is surrounded by an inner cladding region, an air-clad region, and an outer region. A lead end of the air-clad optical fiber is prepared for splicing by removing the air-clad region and all fiber regions outside of the air-clad region, so as to expose an inner fiber region. The prepared lead end of the air-clad optical fiber is then spliced to a lead end of the optical device. The air-clad region may be removed from a selected portion of an air-clad fiber by causing an etchant gas to stream through the air-clad region in the selected portion of the fiber. Heat is then applied to the selected fiber portion, causing at least some of the microstructure to be etched away.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: September 16, 2008
    Assignee: Furukawa Electric North America, Inc.
    Inventors: Jorgen Ostgaard Olsen, Torben Erik Veng