Patents by Inventor Josef J. Stupecky

Josef J. Stupecky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220347442
    Abstract: A multi-layered balloon is provided where each layer is formed such that each layer is made from tubing that optimizes the inner wall stretch thus providing maximum balloon strength. The high pressure, multi-layer balloon is provided with layers that allow for slipping, such that the balloon has a very high pressure rating and toughness, yet excellent folding characteristics. Methods for producing such multi-layer balloons using existing balloon forming equipment are also provided. The multi-layer balloons can have alternating structural and lubricating layers, or layers with low-friction surfaces. The multi-layer balloons are preferably manufactured using a variety of methods including nesting, co-extrusion, or a combination of nesting and co-extrusion. The multi-layer balloons have balloon layers having substantially similar, or the same, high degree of biaxial orientation of their polymer molecules such that each balloon layer of the multi-layer balloon will fail at approximately the same applied pressure.
    Type: Application
    Filed: March 23, 2022
    Publication date: November 3, 2022
    Inventors: Josef J. Stupecky, Eric Mabry
  • Patent number: 11311702
    Abstract: A multi-layered balloon is provided where each layer is formed such that each layer is made from tubing that optimizes the inner wall stretch thus providing maximum balloon strength. The high pressure, multi-layer balloon is provided with layers that allow for slipping, such that the balloon has a very high pressure rating and toughness, yet excellent folding characteristics. Methods for producing such multi-layer balloons using existing balloon forming equipment are also provided. The multi-layer balloons can have alternating structural and lubricating layers, or layers with low-friction surfaces. The multi-layer balloons are preferably manufactured using a variety of methods including nesting, co-extrusion, or a combination of nesting and co-extrusion. The multi-layer balloons have balloon layers having substantially similar, or the same, high degree of biaxial orientation of their polymer molecules such that each balloon layer of the multi-layer balloon will fail at approximately the same applied pressure.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: April 26, 2022
    Assignee: Confluent Medical Technologies, Inc.
    Inventors: Josef J. Stupecky, Eric Mabry
  • Publication number: 20210128892
    Abstract: A multi-layered balloon is provided where each layer is formed such that each layer is made from tubing that optimizes the inner wall stretch thus providing maximum balloon strength. The high pressure, multi-layer balloon is provided with layers that allow for slipping, such that the balloon has a very high pressure rating and toughness, yet excellent folding characteristics. Methods for producing such multi-layer balloons using existing balloon forming equipment are also provided. The multi-layer balloons can have alternating structural and lubricating layers, or layers with low-friction surfaces. The multi-layer balloons are preferably manufactured using a variety of methods including nesting, co-extrusion, or a combination of nesting and co-extrusion. The multi-layer balloons have balloon layers having substantially similar, or the same, high degree of biaxial orientation of their polymer molecules such that each balloon layer of the multi-layer balloon will fail at approximately the same applied pressure.
    Type: Application
    Filed: November 11, 2020
    Publication date: May 6, 2021
    Inventors: Josef J. Stupecky, Eric Mabry
  • Patent number: 10835720
    Abstract: A multi-layered balloon is provided where each layer is formed such that each layer is made from tubing that optimizes the inner wall stretch thus providing maximum balloon strength. The high pressure, multi-layer balloon is provided with layers that allow for slipping, such that the balloon has a very high pressure rating and toughness, yet excellent folding characteristics. Methods for producing such multi-layer balloons using existing balloon forming equipment are also provided. The multi-layer balloons can have alternating structural and lubricating layers, or layers with low-friction surfaces. The multi-layer balloons are preferably manufactured using a variety of methods including nesting, co-extrusion, or a combination of nesting and co-extrusion. The multi-layer balloons have balloon layers having substantially similar, or the same, high degree of biaxial orientation of their polymer molecules such that each balloon layer of the multi-layer balloon will fail at approximately the same applied pressure.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: November 17, 2020
    Assignee: CONFLUENT MEDICAL TECHNOLOGIES, INC.
    Inventors: Josef J. Stupecky, Eric Mabry
  • Publication number: 20180064917
    Abstract: A multi-layered balloon is provided where each layer is formed such that each layer is made from tubing that optimizes the inner wall stretch thus providing maximum balloon strength. The high pressure, multi-layer balloon is provided with layers that allow for slipping, such that the balloon has a very high pressure rating and toughness, yet excellent folding characteristics. Methods for producing such multi-layer balloons using existing balloon forming equipment are also provided. The multi-layer balloons can have alternating structural and lubricating layers, or layers with low-friction surfaces. The multi-layer balloons are preferably manufactured using a variety of methods including nesting, co-extrusion, or a combination of nesting and co-extrusion. The multi-layer balloons have balloon layers having substantially similar, or the same, high degree of biaxial orientation of their polymer molecules such that each balloon layer of the multi-layer balloon will fail at approximately the same applied pressure.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 8, 2018
    Inventors: Josef J. Stupecky, Eric Mabry
  • Patent number: 9833600
    Abstract: A multi-layered balloon is provided where each layer is formed such that each layer is made from tubing that optimizes the inner wall stretch thus providing maximum balloon strength. The high pressure, multi-layer balloon is provided with layers that allow for slipping, such that the balloon has a very high pressure rating and toughness, yet excellent folding characteristics. Methods for producing such multi-layer balloons using existing balloon forming equipment are also provided. The multi-layer balloons can have alternating structural and lubricating layers, or layers with low-friction surfaces. The multi-layer balloons are preferably manufactured using a variety of methods including nesting, co-extrusion, or a combination of nesting and co-extrusion. The multi-layer balloons have balloon layers having substantially similar, or the same, high degree of biaxial orientation of their polymer molecules such that each balloon layer of the multi-layer balloon will fail at approximately the same applied pressure.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: December 5, 2017
    Assignee: Interface Associates, Inc.
    Inventors: Josef J. Stupecky, Eric Mabry
  • Publication number: 20160008589
    Abstract: A nested balloon is provided where each balloon is formed from tubing that optimizes the inner wall stretch thus providing maximum balloon strength. The high pressure, nested balloon is provided with layers that allow for slipping, such that the balloon has a very high pressure rating and toughness, yet excellent folding characteristics. Methods for producing such nested balloons using existing balloon forming equipment are also provided. The nested balloons can have layers with low-friction surfaces. The nested balloons are preferably manufactured using a variety of methods.
    Type: Application
    Filed: July 9, 2015
    Publication date: January 14, 2016
    Inventors: Josef J. Stupecky, Eric Mabry
  • Publication number: 20140116606
    Abstract: A multi-layered balloon is provided where each layer is formed such that each layer is made from tubing that optimizes the inner wall stretch thus providing maximum balloon strength. The high pressure, multi-layer balloon is provided with layers that allow for slipping, such that the balloon has a very high pressure rating and toughness, yet excellent folding characteristics. Methods for producing such multi-layer balloons using existing balloon forming equipment are also provided. The multi-layer balloons can have alternating structural and lubricating layers, or layers with low-friction surfaces. The multi-layer balloons are preferably manufactured using a variety of methods including nesting, co-extrusion, or a combination of nesting and co-extrusion. The multi-layer balloons have balloon layers having substantially similar, or the same, high degree of biaxial orientation of their polymer molecules such that each balloon layer of the multi-layer balloon will fail at approximately the same applied pressure.
    Type: Application
    Filed: October 28, 2013
    Publication date: May 1, 2014
    Applicant: INTERFACE ASSOCIATES, INC.
    Inventors: Josef J. Stupecky, Eric Mabry
  • Patent number: 8568648
    Abstract: A multi-layered balloon is provided where each layer is formed such that each layer is made from tubing that optimizes the inner wall stretch thus providing maximum balloon strength. The high pressure, multi-layer balloon is provided with layers that allow for slipping, such that the balloon has a very high pressure rating and toughness, yet excellent folding characteristics. Methods for producing such multi-layer balloons using existing balloon forming equipment are also provided. The multi-layer balloons can have alternating structural and lubricating layers, or layers with low-friction surfaces. The multi-layer balloons are preferably manufactured using a variety of methods including nesting, co-extrusion, or a combination of nesting and co-extrusion. The multi-layer balloons have balloon layers having substantially similar, or the same, high degree of biaxial orientation of their polymer molecules such that each balloon layer of the multi-layer balloon will fail at approximately the same applied pressure.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: October 29, 2013
    Assignee: Interface Associates, Inc.
    Inventors: Josef J. Stupecky, Eric Mabry
  • Patent number: 8257074
    Abstract: A balloon folding apparatus is provided for use in the manufacture of balloon catheters. The balloon folding apparatus includes a plurality of arms and a plurality of blades attached to the plurality of arms such that the plurality of blades is capable of translating in a radial direction. Preferably, a plurality of stepper motors coupled to the plurality of arms provides precise radial movement of the plurality of blades. Each of the plurality of blades is profiled to create a plurality of folds in a balloon catheter. A balloon wrapping apparatus is also provided and operates in a similar manner. The balloon wrapping apparatus includes a plurality of blades configured to wrap a folded balloon catheter around a catheter shaft so as to minimize the diameter of the balloon catheter.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: September 4, 2012
    Assignee: Interface Associates, Inc.
    Inventor: Josef J. Stupecky
  • Publication number: 20110214802
    Abstract: A multi-layered balloon is provided where each layer is formed such that each layer is made from tubing that optimizes the inner wall stretch thus providing maximum balloon strength. The high pressure, multi-layer balloon is provided with layers that allow for slipping, such that the balloon has a very high pressure rating and toughness, yet excellent folding characteristics. Methods for producing such multi-layer balloons using existing balloon forming equipment are also provided. The multi-layer balloons can have alternating structural and lubricating layers, or layers with low-friction surfaces. The multi-layer balloons are preferably manufactured using a variety of methods including nesting, co-extrusion, or a combination of nesting and co-extrusion. The multi-layer balloons have balloon layers having substantially similar, or the same, high degree of biaxial orientation of their polymer molecules such that each balloon layer of the multi-layer balloon will fail at approximately the same applied pressure.
    Type: Application
    Filed: May 16, 2011
    Publication date: September 8, 2011
    Applicant: INTERFACE ASSOCIATES, INC.
    Inventors: Josef J. Stupecky, Eric Mabry
  • Patent number: 7942847
    Abstract: A multi-layered balloon is provided where each layer is formed such that each layer is made from tubing that optimizes the inner wall stretch thus providing maximum balloon strength. The high pressure, multi-layer balloon is provided with layers that allow for slipping, such that the balloon has a very high pressure rating and toughness, yet excellent folding characteristics. Methods for producing such multi-layer balloons using existing balloon forming equipment are also provided. The multi-layer balloons can have alternating structural and lubricating layers, or layers with low-friction surfaces. The multi-layer balloons are preferably manufactured using a variety of methods including nesting, co-extrusion, or a combination of nesting and co-extrusion. The multi-layer balloons have balloon layers having substantially similar, or the same, high degree of biaxial orientation of their polymer molecules such that each balloon layer of the multi-layer balloon will fail at approximately the same applied pressure.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: May 17, 2011
    Assignee: Interface Associates, Inc.
    Inventors: Josef J. Stupecky, Eric Mabry
  • Patent number: 7762804
    Abstract: A balloon folding apparatus is provided for use in the manufacture of balloon catheters. The balloon folding apparatus includes a plurality of arms and a plurality of blades attached to the plurality of arms such that the plurality of blades is capable of translating in a radial direction. Preferably, a plurality of stepper motors coupled to the plurality of arms provides precise radial movement of the plurality of blades. Each of the plurality of blades is profiled to create a plurality of folds in a balloon catheter. A balloon wrapping apparatus is also provided and operates in a similar manner. The balloon wrapping apparatus includes a plurality of blades configured to wrap a folded balloon catheter around a catheter shaft so as to minimize the diameter of the balloon catheter.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: July 27, 2010
    Assignee: Interface Associates, Inc.
    Inventor: Josef J. Stupecky
  • Patent number: 7578165
    Abstract: Measurement devices and methods for measuring balloon catheters are provided. Embodiments enable measuring the outer dimensions and burst pressure of a balloon catheter. The measurement apparatus can measure a balloon catheter in ambient air or a balloon catheter submerged in a heated water bath. In ambient air, an axial drive mechanism translates the balloon catheter in an axial direction and a rotary drive mechanism rotates the balloon catheter while a measurement device is used to measure balloon catheter dimensions. In a water tank, an axial drive mechanism translates the balloon catheter in an axial direction while a measurement device is used to measure the burst pressure of the balloon catheter. The devices and methods can utilize a laser micrometer in order to provide such measurements. A control unit provides a user interface and is capable of displaying real time data during the measurement process.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: August 25, 2009
    Assignee: Interface Associates, Inc.
    Inventor: Josef J. Stupecky
  • Patent number: 7010953
    Abstract: A swaging machine is configured to substantially uniformly reduce the diameter of a tubular attachment, such as a marker band, to result in a smooth and repeatable finished part. The swaging machine comprises a feed system, an impact system, and a rotation system. A split die having a compound die cavity is provided for use in conjunction with the swaging machine to receive an impact force from the impact system and, in turn, apply a swaging force to the marker band. The rotation system rotates the impact system, including the die, about the axis of the marker band to apply swaging forces about the circumference of the marker band, while the feed system feeds the marker band through the die thereby applying swaging forces along the length of the marker band.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: March 14, 2006
    Assignee: Interface Associates, Inc.
    Inventor: Josef J. Stupecky
  • Patent number: 6993953
    Abstract: A swaging die is configured to substantially uniformly reduce the diameter of a tubular attachment, such as a marker band, to result in a smooth and repeatable finished part. The swaging die comprises a first block, and a second block, with each of the first and second blocks defining a cavity that cooperate to define a swaging cavity when the first block is juxtaposed with the second block. The first block is configured to receive an impact, thereby varying the volume of the swaging cavity and applying a swaging force onto a tubular attachment located therein. The tubular attachment is preferably fed through the swaging cavity to uniformly and gradually reduce the diameter of the tubular attachment.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 7, 2006
    Assignee: Interface Associates, Inc.
    Inventor: Josef J. Stupecky
  • Publication number: 20040149001
    Abstract: A swaging die is configured to substantially uniformly reduce the diameter of a tubular attachment, such as a marker band, to result in a smooth and repeatable finished part. The swaging die comprises a first block, and a second block, with each of the first and second blocks defining a cavity that cooperate to define a swaging cavity when the first block is juxtaposed with the second block. The first block is configured to receive an impact, thereby varying the volume of the swaging cavity and applying a swaging force onto a tubular attachment located therein. The tubular attachment is preferably fed through the swaging cavity to uniformly and gradually reduce the diameter of the tubular attachment.
    Type: Application
    Filed: September 30, 2003
    Publication date: August 5, 2004
    Inventor: Josef J. Stupecky
  • Publication number: 20040149000
    Abstract: A swaging machine is configured to substantially uniformly reduce the diameter of a tubular attachment, such as a marker band, to result in a smooth and repeatable finished part. The swaging machine comprises a feed system, an impact system, and a rotation system. A split die having a compound die cavity is provided for use in conjunction with the swaging machine to receive an impact force from the impact system and, in turn, apply a swaging force to the marker band. The rotation system rotates the impact system, including the die, about the axis of the marker band to apply swaging forces about the circumference of the marker band, while the feed system feeds the marker band through the die thereby applying swaging forces along the length of the marker band.
    Type: Application
    Filed: September 30, 2003
    Publication date: August 5, 2004
    Inventor: Josef J. Stupecky
  • Patent number: 5405269
    Abstract: A modular constructed connector for interconnecting with a single male and female connector a plurality of electrical lines and fluid lines while maintaining a consistent bubble-tight fluid interconnection. The modular design permits the number of fluidic and electrical connections to be varied depending upon the particular application. In one embodiment, a programmable microchip is mounted within this connector. This chip stores the response characteristics of a flow meter used, for example, as an air flow measurement device in a respiratory circuit. The connector includes a passage for providing fluidic communication between the flow meter or other sensor and a medical monitoring device. In turn, the monitoring device communicates electrically with the programmable microchip to determine a correction factor to be applied to the fluidic signal received from the flow meter.
    Type: Grant
    Filed: February 26, 1993
    Date of Patent: April 11, 1995
    Inventor: Josef J. Stupecky
  • Patent number: 5197895
    Abstract: A modular constructed connector for interconnecting with a single male and female connector a plurality of electrical lines and fluid lines while maintaining a consistent bubble-tight fluid interconnection. The modular design permits the number of fluidic and electrical connections to be varied depending upon the particular application. In one embodiment, a programmable microchip is mounted within this connector. This chip stores the response characteristics of a flow meter used, for example, as an air flow measurement device in a respiratory circuit.
    Type: Grant
    Filed: May 10, 1991
    Date of Patent: March 30, 1993
    Assignee: Bicore Monitoring Systems
    Inventor: Josef J. Stupecky