Patents by Inventor Joseph A. Brotz

Joseph A. Brotz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240148429
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: November 29, 2023
    Publication date: May 9, 2024
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, JR., Joseph A. Brotz, John E. Hein
  • Patent number: 11871982
    Abstract: A control circuit is disclosed that comprises a resistor and a switch network. The switch network is configured to transition between a plurality of states corresponding to a plurality of operational modes of a surgical instrument. In a first phase of a control signal, the control circuit is configured to communicate surgical instrument information to a surgical generator. In the second phase of the control signal and when the at least one switch of the switch network is in a first state of the plurality of states, the control circuit is configured to provide an output corresponding to one of the plurality of states. In the second phase of the control signal and when the at least one switch of the switch network is in a second state of the plurality of states, the control circuit is configured to provide a second output.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: January 16, 2024
    Assignee: Cilag GmbH International
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Jr., Joseph A. Brotz, John E. Hein
  • Publication number: 20210393314
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: July 8, 2021
    Publication date: December 23, 2021
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Jr., Joseph A. Brotz, John E. Hein
  • Patent number: 11090104
    Abstract: A control circuit configured to receive a control signal that defines a first phase and a second phase from a surgical generator. The control circuit may include a first resistor, a second resistor in parallel with the first resistor, and a switch in series with the second resistor. The switch may be configured to transition between an open state and a closed state corresponding to an operational mode of a surgical instrument. In the first phase of the control signal, the control circuit is configured to communicate surgical instrument information to the surgical generator. In the second phase of the control signal and in the open state of the switch, the control circuit is configured to provide a first output. In the second phase of the control signal and in the closed state of the switch, the control circuit is configured to provide a second output.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: August 17, 2021
    Assignee: Cilag GmbH International
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Jr., Joseph A. Brotz, John E. Hein
  • Publication number: 20190282292
    Abstract: A control circuit configured to receive a control signal that defines a first phase and a second phase from a surgical generator. The control circuit may include a first resistor, a second resistor in parallel with the first resistor, and a switch in series with the second resistor. The switch may be configured to transition between an open state and a closed state corresponding to an operational mode of a surgical instrument. In the first phase of the control signal, the control circuit is configured to communicate surgical instrument information to the surgical generator. In the second phase of the control signal and in the open state of the switch, the control circuit is configured to provide a first output. In the second phase of the control signal and in the closed state of the switch, the control circuit is configured to provide a second output.
    Type: Application
    Filed: January 15, 2019
    Publication date: September 19, 2019
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, JR., Joseph A. Brotz, John E. Hein
  • Patent number: 10265117
    Abstract: A method for controlling a waveform shape of a motional branch current in an ultrasonic transducer of a surgical device. The method may comprise generating a transducer drive signal by selectively recalling, using a direct digital synthesis (DDS) algorithm, drive signal waveform samples stored in a look-up table (LUT), generating samples of current and voltage of the transducer drive signal when the transducer drive signal is communicated to the surgical device, determining samples of the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and a frequency of the transducer drive signal, comparing each sample of the motional branch current to a respective target sample of a target waveform to determine an error amplitude, and modifying the drive signal waveform samples stored in the LUT such that an amplitude error between subsequent samples of the motional branch current and respective target samples is reduced.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: April 23, 2019
    Assignee: Ethicon LLC
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, James R. Giordano, Foster B. Stulen, Joseph A. Brotz, John E. Hein
  • Patent number: 10263171
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: April 16, 2019
    Assignee: Ethicon LLC
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Jr., Joseph A. Brotz, John E. Hein
  • Patent number: 10201382
    Abstract: A surgical generator is disclosed including an ultrasonic generator module to provide at an ultrasonic drive signal for driving an ultrasonic surgical device and an electrosurgical generator module to provice an electrosurgical drive signal for driving an electrosurgical device. At least one of providing the ultrasonic drive signal or providing the electrosurgical drive signal includes recalling a waveform sample from a look-up table (LUT), modifying the waveform sample to generate a modified waveform based on voltage and current feedback information to pre-distort the waveform sample on a dynamic ongoing basis, indexing each stored voltage and current feedback data pair based on a corresponding LUT sample that was output when the voltage and current feedback data pair was acquired, synchronizing the LUT sample and the voltage and current feedback data pair to correct timing and stability of the pre-distorted waveform sample, and providing the modified waveform to an output stage.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: February 12, 2019
    Assignee: Ethicon LLC
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Joseph A. Brotz, John E. Hein
  • Publication number: 20180168714
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: March 13, 2015
    Publication date: June 21, 2018
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Joseph A. Brotz, John E. Hein
  • Publication number: 20180116706
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: March 13, 2015
    Publication date: May 3, 2018
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Jr., Joseph A. Brotz, John E. Hein
  • Publication number: 20150340586
    Abstract: A method for controlling a waveform shape of a motional branch current in an ultrasonic transducer of a surgical device. The method may comprise generating a transducer drive signal by selectively recalling, using a direct digital synthesis (DDS) algorithm, drive signal waveform samples stored in a look-up table (LUT), generating samples of current and voltage of the transducer drive signal when the transducer drive signal is communicated to the surgical device, determining samples of the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and a frequency of the transducer drive signal, comparing each sample of the motional branch current to a respective target sample of a target waveform to determine an error amplitude, and modifying the drive signal waveform samples stored in the LUT such that an amplitude error between subsequent samples of the motional branch current and respective target samples is reduced.
    Type: Application
    Filed: May 18, 2015
    Publication date: November 26, 2015
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, James R. Giordano, Foster B. Stulen, Joseph A. Brotz, John E. Hein
  • Publication number: 20150182276
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Foster B. Stulen, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, JR., Joseph A. Brotz, John E. Hein
  • Publication number: 20150182277
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Foster B. Stulen, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Jr., Joseph A. Brotz, John E. Hein
  • Patent number: 9060775
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: June 23, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, James R. Giordano, Foster B. Stulen, Joseph A. Brotz, John E. Hein
  • Publication number: 20110087256
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 14, 2011
    Applicant: Ethicon Endo-Surgery, Inc.
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, James R. Giordano, Foster B. Stulen, Joseph A. Brotz, John E. Hein
  • Patent number: 7179271
    Abstract: The ability of an ultrasonic system to sweep and lock onto a resonance frequency of a blade subjected to a heavy load at startup is improved by applying a high drive voltage or a high drive current while systematically increasing the level of the applied signal. Increasing the drive signal to the hand piece results in an improved and more pronounced “impedance spectrum.” That is, under load, the increased drive signal causes the maximum phase margin to become higher and the minimum/maximum impedance magnitude to become more pronounced. Increasing the excitation drive signal to the hand piece/blade at startup significantly alleviates the limiting factors associated with ultrasonic generators, which results in an increase of the maximum load capability at startup.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: February 20, 2007
    Assignee: Ethicon Endo-Surgery, Inc
    Inventors: Allan L. Friedman, William T. Donofrio, Eitan T. Wiener, Joseph A. Brotz, John E. Hein
  • Patent number: 6898536
    Abstract: The start up performance of an ultrasonic system under zero load conditions is improved by setting a phase set point in a frequency control loop such that, at start up under zero load conditions, the phase set point intersects a point on a phase-frequency response curve which has a low positive slope. This intersection point on the phase-frequency response curve changes as the load is increased and the system Q is decreased. The controller “seeks” a target 0° impedance phase angle. The frequency of the ultrasonic generator is set to an off-resonance frequency which is lower than the resonance of any known hand piece/blade combination. In order for the drive voltage to not exceed the physical limit of the system, the drive current is set to a low level. The drive frequency is then smoothly increased in steps until the target 0° impedance phase delta is located.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: May 24, 2005
    Assignee: Etchicon Endo-Surgery, Inc.
    Inventors: Eitan T. Wiener, Joseph A. Brotz, John E. Hein
  • Publication number: 20030130678
    Abstract: The ability of an ultrasonic system to sweep and lock onto a resonance frequency of a blade subjected to a heavy load at startup is improved by applying a high drive voltage or a high drive current while systematically increasing the level of the applied signal. Increasing the drive signal to the hand piece results in an improved and more pronounced “impedance spectrum.” That is, under load, the increased drive signal causes the maximum phase margin to become higher and the minimum/maximum impedance magnitude to become more pronounced. Increasing the excitation drive signal to the hand piece/blade at startup significantly alleviates the limiting factors associated with ultrasonic generators, which results in an increase of the maximum load capability at startup.
    Type: Application
    Filed: December 20, 2002
    Publication date: July 10, 2003
    Applicant: Ethicon-Endo Surgery, Inc.
    Inventors: Allan L. Friedman, William T. Donofrio, Eitan T. Wiener, Joseph A. Brotz, John E. Hein
  • Publication number: 20030009303
    Abstract: The start up performance of an ultrasonic system under zero load conditions is improved by setting a phase set point in a frequency control loop such that, at start up under zero load conditions, the phase set point intersects a point on a phase-frequency response curve which has a low positive slope. This intersection point on the phase-frequency response curve changes as the load is increased and the system Q is decreased. The controller “seeks” a target 0° impedance phase angle. The frequency of the ultrasonic generator is set to an off-resonance frequency which is lower than the resonance of any known hand piece/blade combination. In order for the drive voltage to not exceed the physical limit of the system, the drive current is set to a low level. The drive frequency is then smoothly increased in steps until the target 0° impedance phase delta is located.
    Type: Application
    Filed: September 4, 2002
    Publication date: January 9, 2003
    Applicant: Ethicon Endo-Surgery
    Inventors: Eitan T. Wiener, Joseph A. Brotz, John E. Hein