Patents by Inventor Joseph C. Farmer

Joseph C. Farmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11878282
    Abstract: A method includes forming a carbon aerogel on a substrate to produce a highly adsorptive structure. The carbon aerogel is characterized by having physical characteristics of in-situ formation on the substrate.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: January 23, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer
  • Patent number: 11786883
    Abstract: A highly adsorptive structure includes: a substrate; and a metal-organic framework (MOF) comprising a plurality of metal atoms coordinated to a plurality of organic spacer molecules; wherein the MOF is coupled to at least one surface of the substrate, wherein the MOF is configured to adsorb and desorb a refrigerant under predetermined thermodynamic conditions. The refrigerant includes one or more materials selected from the group consisting of: acid halides, alcohols, aldehydes, amines, chlorofluorocarbons, esters, ethers, fluorocarbons, perfluorocarbons, halocarbons, halogenated aldehydes, halogenated amines, halogenated hydrocarbons, halomethanes, hydrocarbons, hydrochlorofluorocarbons, hydrofluoroethers, hydrofluoroolefins, inorganic gases, ketones, nitrocarbon compounds, noble gases, organochlorine compounds, organofluorine compounds, organophosphorous compounds, organosilicon compounds, oxide gases, refrigerant blends and thiols.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: October 17, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer, Todd Bandhauer
  • Patent number: 11686508
    Abstract: An adsorptive cooling system includes two highly adsorptive structures positioned to receive thermal energy from a thermal energy source, each highly adsorptive structure includes a substrate and a metal-organic framework (MOF) coupled to the respective substrate and adapted for adsorbing and desorbing a refrigerant under predetermined thermodynamic conditions. The adsorptive cooling system includes a cooling unit and a circulation system adapted for circulating the refrigerant from one of the highly adsorptive structures to the cooling unit to provide cooling from the thermal energy source and to return the refrigerant from the cooling unit to the same or other highly adsorptive structure. Each substrate may include a plurality of microchannels, providing ingress and egress paths for a refrigerant, defined by grooves in a surface of the substrate nearest the MOF and/or surfaces of a plurality of microcapillaries of the substrate. The microchannels provide ingress and egress paths for a refrigerant.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: June 27, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer
  • Publication number: 20230123528
    Abstract: The present disclosure relates to a system for performing an Additive Manufacturing (AM) fabrication process on a powdered material, deposited as a powder bed and forming a substrate. The system makes use of a laser for generating a laser beam, and an optical subsystem. The optical subsystem is configured to receive the laser beam and to generate an optical signal comprised of electromagnetic radiation sufficient to melt or sinter the powdered material. The optical subsystem uses a digitally controlled mask configured to pattern the optical signal as needed to melt select portions of a layer of the powdered material to form a layer of a 3D part. A power supply and at least one processor are also included for generating a plurality of different power density levels selectable based on a specific material composition, absorptivity and diameter of the powder particles, and a known thickness of the powder bed. The powdered material is used to form the 3D part in a sequential layer-by-layer process.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 20, 2023
    Inventors: Bassem S. EL-DASHER, Andrew J. BAYRAMIAN, James A. DEMUTH, Joseph C. FARMER, Sharon G. TORRES
  • Patent number: 11534865
    Abstract: The present disclosure relates to a system for performing an Additive Manufacturing (AM) fabrication process on a powdered material (PM) forming a substrate. The system uses a first optical subsystem to generate an optical signal comprised of electromagnetic (EM) radiation sufficient to melt or sinter a PM of the substrate. The first optical subsystem is controlled to generate a plurality of different power density levels, with a specific one being selected based on a specific PM forming a powder bed being used to form a 3D part. At least one processor controls the first optical subsystem and adjusts a power density level of the optical signal, taking into account a composition of the PM. A second optical subsystem receives the optical signal from the first optical subsystem and controls the optical signal to help facilitate melting of the PM in a layer-by-layer sequence of operations.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: December 27, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Bassem S. El-Dasher, Andrew Bayramian, James A. Demuth, Joseph C. Farmer, Sharon G. Torres
  • Patent number: 11444231
    Abstract: An energy harvesting system for collecting energy from sources of thermal energy that exist in the environment and convert the energy to electricity. The system has N-P junctions mounted on the outer surface of a conduit, pipe or flue. A hot medium flows through the conduit, pipe or flue. The p-n junctions operate as thermoelectric power generators. Heat absorbed at the p-n junctions increases the kinetic energy of charge carriers causing migration of the charge carriers. This thermally-driven migration of charge carriers is used to drive an electrical current in an external circuit.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: September 13, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Joseph C. Farmer, James Kaschmitter
  • Publication number: 20210346864
    Abstract: A method includes forming a carbon aerogel on a substrate to produce a highly adsorptive structure. The carbon aerogel is characterized by having physical characteristics of in-situ formation on the substrate.
    Type: Application
    Filed: June 17, 2021
    Publication date: November 11, 2021
    Inventors: Theodore F. Baumann, Joe H. Satcher, JR., Joseph C. Farmer
  • Publication number: 20210308651
    Abstract: A product includes a highly adsorptive structure comprising: a substrate, wherein the substrate comprises a plurality of microchannels; and a carbon aerogel adhered to the substrate. The carbon aerogel is characterized by having physical characteristics of in situ formation on the substrate. Moreover, An adsorptive cooling system includes: a first highly adsorptive structure positioned to receive thermal energy from a thermal energy source, the first highly adsorptive structure comprising: a first substrate; and a first carbon aerogel adhered to the first substrate; a second highly adsorptive structure positioned to receive thermal energy from the thermal energy source, the second highly adsorptive structure comprising: a second substrate; and a second carbon aerogel adhered to the second substrate. The first substrate and/or the second substrate independently comprise a plurality of microchannels.
    Type: Application
    Filed: June 17, 2021
    Publication date: October 7, 2021
    Inventors: Theodore F. Baumann, Joe H. Satcher, JR., Joseph C. Farmer
  • Publication number: 20210299633
    Abstract: A highly adsorptive structure includes: a substrate; and a metal-organic framework (MOF) comprising a plurality of metal atoms coordinated to a plurality of organic spacer molecules; wherein the MOF is coupled to at least one surface of the substrate, wherein the MOF is configured to adsorb and desorb a refrigerant under predetermined thermodynamic conditions. The refrigerant includes one or more materials selected from the group consisting of: acid halides, alcohols, aldehydes, amines, chlorofluorocarbons, esters, ethers, fluorocarbons, perfluorocarbons, halocarbons, halogenated aldehydes, halogenated amines, halogenated hydrocarbons, halomethanes, hydrocarbons, hydrochlorofluorocarbons, hydrofluoroethers, hydrofluoroolefins, inorganic gases, ketones, nitrocarbon compounds, noble gases, organochlorine compounds, organofluorine compounds, organophosphorous compounds, organosilicon compounds, oxide gases, refrigerant blends and thiols.
    Type: Application
    Filed: March 11, 2021
    Publication date: September 30, 2021
    Inventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer, Todd Bandhauer
  • Patent number: 11052375
    Abstract: An adsorptive cooling system includes: a first highly adsorptive structure positioned to receive thermal energy from a thermal energy source, the first highly adsorptive structure including: a first substrate; and a first carbon aerogel adhered to the first substrate, a second highly adsorptive structure positioned to receive thermal energy from the thermal energy source, the second highly adsorptive structure including: a second substrate; and a second carbon aerogel adhered to the second substrate, a cooling unit; and a circulation system adapted for circulating the refrigerant from at least one of the first highly adsorptive structure and the second highly adsorptive structure to the cooling unit to provide cooling from the thermal energy source and to return the refrigerant from the cooling unit to at least one of the first highly adsorptive structure and the second highly adsorptive structure.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: July 6, 2021
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer
  • Patent number: 11000823
    Abstract: A highly adsorptive structure includes: a substrate; and a carbon aerogel adhered to the substrate, wherein the carbon aerogel is characterized by having physical characteristics of in-situ formation on the substrate, and wherein the carbon aerogel is configured to selectively adsorb and desorb one or more refrigerants selected from the group consisting of: acid halides, alcohols, aldehydes, amines, chlorofluorocarbons, esters, ethers, fluorocarbons, perfluorocarbons, halocarbons, halogenated aldehydes, halogenated amines, halogenated hydrocarbons, halomethanes, hydrocarbons, hydrochlorofluorocarbons, hydrofluoroethers, hydrofluoroolefins, inorganic gases, ketones, nitrocarbon compounds, noble gases, organochlorine compounds, organofluorine compounds, organophosphorous compounds, organosilicon compounds, oxide gases, refrigerant blends and thiols.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 11, 2021
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer, Todd Bandhauer
  • Patent number: 10994258
    Abstract: A highly adsorptive structure, includes: a substrate; and a metal-organic framework (MOF) comprising a plurality of metal atoms coordinated to a plurality of organic spacer molecules; wherein the MOF is coupled to at least one surface of the substrate, wherein the MOF is adapted for adsorbing and desorbing a refrigerant under predetermined thermodynamic conditions. The refrigerant includes one or more materials selected from the group consisting of: acid halides, alcohols, aldehydes, amines, chlorofluorocarbons, esters, ethers, fluorocarbons, perfluorocarbons, halocarbons, halogenated aldehydes, halogenated amines, halogenated hydrocarbons, halomethanes, hydrocarbons, hydrochlorofluorocarbons, hydrofluoroethers, hydrofluoroolefins, inorganic gases, ketones, nitrocarbon compounds, noble gases, organochlorine compounds, organofluorine compounds, organophosphorous compounds, organosilicon compounds, oxide gases, refrigerant blends and thiols.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 4, 2021
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer, Todd Bandhauer
  • Publication number: 20210095899
    Abstract: An adsorptive cooling system includes two highly adsorptive structures positioned to receive thermal energy from a thermal energy source, each highly adsorptive structure includes a substrate and a metal-organic framework (MOF) coupled to the respective substrate and adapted for adsorbing and desorbing a refrigerant under predetermined thermodynamic conditions. The adsorptive cooling system includes a cooling unit and a circulation system adapted for circulating the refrigerant from one of the highly adsorptive structures to the cooling unit to provide cooling from the thermal energy source and to return the refrigerant from the cooling unit to the same or other highly adsorptive structure. Each substrate may include a plurality of microchannels, providing ingress and egress paths for a refrigerant, defined by grooves in a surface of the substrate nearest the MOF and/or surfaces of a plurality of microcapillaries of the substrate. The microchannels provide ingress and egress paths for a refrigerant.
    Type: Application
    Filed: September 28, 2020
    Publication date: April 1, 2021
    Inventors: Theodore F. Baumann, Joe H. Satcher, JR., Joseph C. Farmer
  • Publication number: 20210078077
    Abstract: The present disclosure relates to a method of producing a product through additive manufacturing with heat treatment. The method involves using a fusing beam to melt powder particles disposed on a substrate. The fused powder particles are then heat treated with a heat treating beam. The heat treatment is thus completed on a given layer prior to laying down additional new layers of material. In one implementation the heat treatment is an annealing operation. The method may further involve providing a new layer of powdered material on top of the layer of fused powder particles subsequent to the heat treatment, and repeating the melting and heat treating operations in a layer-by-layer fashion until the part is completed.
    Type: Application
    Filed: November 25, 2020
    Publication date: March 18, 2021
    Inventors: James A. DEMUTH, Andrew BAYRAMIAN, Bassem S. EL-DASHER, Joseph C. FARMER, Kevin J. KRAMER, Alexander RUBENCHIK
  • Patent number: 10898954
    Abstract: The present disclosure relates to a method of producing a product through additive manufacturing with heat treatment. The method involves using a fusing beam to melt powder particles disposed on a substrate, where the fusing beam is impressed with a two dimensional pattern containing image information from a first layer to be printed. The fused powder particles are then heat treated with a beam impressed with an additional two dimensional pattern. The additional two dimensional pattern has image information from the first layer to achieve heat treatment of the product. The heat treatment is completed prior to laying down additional new layers of material. The heat treatment is an annealing operation.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: January 26, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James A. Demuth, Andrew J. Bayramian, Bassem S. El-Dasher, Joseph C. Farmer, Kevin J. Kramer, Alexander Rubenchik
  • Patent number: 10830504
    Abstract: An adsorptive cooling system includes: a first highly adsorptive structure positioned to receive thermal energy from a thermal energy source, including: a first substrate; and a first metal-organic framework (MOF) coupled to the first substrate and adapted for adsorbing and desorbing a refrigerant under predetermined thermodynamic conditions; a second highly adsorptive structure positioned to receive thermal energy from the thermal energy source including: a second substrate; and a second MOF coupled to the second substrate and adapted for adsorbing and desorbing a refrigerant under predetermined thermodynamic conditions; a cooling unit; and a circulation system adapted for circulating refrigerant from the first highly adsorptive structure and the second highly adsorptive structure to the cooling unit to provide cooling from the thermal energy source and to return the refrigerant to at least one of the first highly adsorptive structure and the second highly adsorptive structure.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: November 10, 2020
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Theodore F. Baumann, Joe H. Satcher, Jr., Joseph C. Farmer
  • Publication number: 20200279664
    Abstract: Fabricating structural components for a spent nuclear fuel container using the steps of forming cylindrical or rectangular channels to produce a structural component for a spent nuclear fuel container and applying a coating that includes tantalum-based material to the cylindrical or rectangular channels.
    Type: Application
    Filed: May 8, 2020
    Publication date: September 3, 2020
    Inventors: Joseph C. Farmer, Jor-Shan Choi, Alexander M. Rubenchik
  • Publication number: 20200180029
    Abstract: The present disclosure relates to a method of producing a product through additive manufacturing with heat treatment. The method involves using a fusing beam to melt powder particles disposed on a substrate, where the fusing beam is impressed with a two dimensional pattern containing image information from a first layer to be printed. The fused powder particles are then heat treated with a beam impressed with an additional two dimensional pattern. The additional two dimensional pattern has image information from the first layer to achieve heat treatment of the product. The heat treatment is completed prior to laying down additional new layers of material. The heat treatment is an annealing operation.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 11, 2020
    Inventors: James A. DEMUTH, Andrew J. BAYRAMIAN, Bassem S. EL-DASHER, Joseph C. FARMER, Kevin J. KRAMER, Alexander RUBENCHIK
  • Patent number: 10679761
    Abstract: Fabricating structural components for a spent nuclear fuel container using the steps of forming cylindrical or rectangular channels to produce a structural component for a spent nuclear fuel container and applying a coating that includes tantalum-based material to the cylindrical or rectangular channels.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 9, 2020
    Assignee: Lawerence Livermore National Security, LLC
    Inventors: Joseph C. Farmer, Jor-Shan Choi, Alexander M. Rubenchik
  • Publication number: 20200152343
    Abstract: Fabricating structural components for a spent nuclear fuel container using the steps of forming cylindrical or rectangular channels to produce a structural component for a spent nuclear fuel container and applying a coating that includes tantalum-based material to the cylindrical or rectangular channels.
    Type: Application
    Filed: March 14, 2014
    Publication date: May 14, 2020
    Inventors: Joseph C. Farmer, Jor-Shan Choi, Alexander M. Rubenchik