Patents by Inventor Joseph D. Ratterman

Joseph D. Ratterman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9971713
    Abstract: A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: May 15, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sameh Asaad, Ralph E. Bellofatto, Michael A. Blocksome, Matthias A. Blumrich, Peter Boyle, Jose R. Brunheroto, Dong Chen, Chen-Yong Cher, George L. Chiu, Norman Christ, Paul W. Coteus, Kristan D. Davis, Gabor J. Dozsa, Alexandre E. Eichenberger, Noel A. Eisley, Matthew R. Ellavsky, Kahn C. Evans, Bruce M. Fleischer, Thomas W. Fox, Alan Gara, Mark E. Giampapa, Thomas M. Gooding, Michael K. Gschwind, John A. Gunnels, Shawn A. Hall, Rudolf A. Haring, Philip Heidelberger, Todd A. Inglett, Brant L. Knudson, Gerard V. Kopcsay, Sameer Kumar, Amith R. Mamidala, James A. Marcella, Mark G. Megerian, Douglas R. Miller, Samuel J. Miller, Adam J. Muff, Michael B. Mundy, John K. O'Brien, Kathryn M. O'Brien, Martin Ohmacht, Jeffrey J. Parker, Ruth J. Poole, Joseph D. Ratterman, Valentina Salapura, David L. Satterfield, Robert M. Senger, Burkhard Steinmacher-Burow, William M. Stockdell, Craig B. Stunkel, Krishnan Sugavanam, Yutaka Sugawara, Todd E. Takken, Barry M. Trager, James L. Van Oosten, Charles D. Wait, Robert E. Walkup, Alfred T. Watson, Robert W. Wisniewski, Peng Wu
  • Patent number: 9882801
    Abstract: Methods, apparatus, and products are disclosed for providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: receiving a network packet in a compute node, the network packet specifying a destination compute node; selecting, in dependence upon the destination compute node, at least one of the links for the compute node along which to forward the network packet toward the destination compute node; and forwarding the network packet along the selected link to the adjacent compute node connected to the compute node through the selected link.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Daniel A. Faraj, Todd A. Inglett, Joseph D. Ratterman
  • Patent number: 9811316
    Abstract: The present invention provides a system and method for extracting elements from distributed arrays on a parallel processing system. The system includes a module that populates a result array with globally largest elements from input arrays, a module that generates a partition element, a module that counts the number of local elements greater than the partition element, and a module that determines the globally largest elements. The method for extracting elements from distributed arrays on a parallel processing system includes populating a result array with globally largest elements from input arrays, generating a partition element, counting the number of local elements greater than the partition and determining the globally largest elements.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: November 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles J. Archer, Michael A. Blocksome, Joseph D. Ratterman, Brian Smith
  • Patent number: 9607116
    Abstract: Distributed hardware device simulation, including: identifying a plurality of hardware components of the hardware device; providing software components simulating the functionality of each hardware component, wherein the software components are installed on compute nodes of a distributed processing system; receiving, in at least one of the software components, one or more messages representing an input to the hardware component; simulating the operation of the hardware component with the software component, thereby generating an output of the software component representing the output of the hardware component; and sending, from the software component to at least one other software component, one or more messages representing the output of the hardware component.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: March 28, 2017
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Michael A. Blocksome, Joseph D. Ratterman, Brian E. Smith
  • Patent number: 9569399
    Abstract: Routing data communications packets in a parallel computer that includes compute nodes organized for collective operations. Each compute node including an operating system kernel and a system-level messaging module that is a module of automated computing machinery that exposes a messaging interface to applications. Each compute node including a routing table that specifies, for each of a multiplicity of route identifiers, a data communications path through the compute node. Including to carry out the steps of: receiving in a compute node a data communications packet that includes a route identifier value; retrieving from the routing table a specification of a data communications path through the compute node; and routing, by the compute node, the data communications packet according to the data communications path identified by the compute node's routing table entry for the data communications packet's route identifier value.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: February 14, 2017
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Michael A. Blocksome, Todd A. Inglett, Joseph D. Ratterman, Brian E. Smith
  • Patent number: 9569398
    Abstract: Routing data communications packets in a parallel computer that includes compute nodes organized for collective operations. Each compute node including an operating system kernel and a system-level messaging module that is a module of automated computing machinery that exposes a messaging interface to applications. Each compute node including a routing table that specifies, for each of a multiplicity of route identifiers, a data communications path through the compute node. Including to carry out the steps of: receiving in a compute node a data communications packet that includes a route identifier value; retrieving from the routing table a specification of a data communications path through the compute node; and routing, by the compute node, the data communications packet according to the data communications path identified by the compute node's routing table entry for the data communications packet's route identifier value.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: February 14, 2017
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Michael A. Blocksome, Todd A. Inglett, Joseph D. Ratterman, Brian E. Smith
  • Patent number: 9459934
    Abstract: Performing a global barrier operation in a parallel computer that includes compute nodes coupled for data communications, where each compute node executes tasks, with one task on each compute node designated as a master task, including: for each task on each compute node until all master tasks have joined a global barrier: determining whether the task is a master task; if the task is not a master task, joining a single local barrier; if the task is a master task, joining the global barrier and the single local barrier only after all other tasks on the compute node have joined the single local barrier.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: October 4, 2016
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Michael A. Blocksome, Joseph D. Ratterman, Brian E. Smith
  • Patent number: 9459917
    Abstract: Methods, apparatus, and products are disclosed for thread selection during context switching on a plurality of compute nodes that includes: executing, by a compute node, an application using a plurality of threads of execution, including executing one or more of the threads of execution; selecting, by the compute node from a plurality of available threads of execution for the application, a next thread of execution in dependence upon power characteristics for each of the available threads; determining, by the compute node, whether criteria for a thread context switch are satisfied; and performing, by the compute node, the thread context switch if the criteria for a thread context switch are satisfied, including executing the next thread of execution.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: October 4, 2016
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Michael A. Blocksome, Amanda E. Randles, Joseph D. Ratterman, Brian E. Smith
  • Patent number: 9317637
    Abstract: Distributed hardware device simulation, including: identifying a plurality of hardware components of the hardware device; providing software components simulating the functionality of each hardware component, wherein the software components are installed on compute nodes of a distributed processing system; receiving, in at least one of the software components, one or more messages representing an input to the hardware component; simulating the operation of the hardware component with the software component, thereby generating an output of the software component representing the output of the hardware component; and sending, from the software component to at least one other software component, one or more messages representing the output of the hardware component.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 19, 2016
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Michael A. Blocksome, Joseph D. Ratterman, Brian E. Smith
  • Patent number: 9286145
    Abstract: Processing data communications events in a parallel active messaging interface (‘PAMI’) of a parallel computer that includes compute nodes that execute a parallel application, with the PAMI including data communications endpoints, and the endpoints are coupled for data communications through the PAMI and through other data communications resources, including determining by an advance function that there are no actionable data communications events pending for its context, placing by the advance function its thread of execution into a wait state, waiting for a subsequent data communications event for the context; responsive to occurrence of a subsequent data communications event for the context, awakening by the thread from the wait state; and processing by the advance function the subsequent data communications event now pending for the context.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: March 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Michael A. Blocksome, Joseph D. Ratterman, Brian E. Smith
  • Patent number: 9250949
    Abstract: A parallel computer executes a number of tasks, each task includes a number of endpoints and the endpoints are configured to support collective operations. In such a parallel computer, establishing a group of endpoints receiving a user specification of a set of endpoints included in a global collection of endpoints, where the user specification defines the set in accordance with a predefined virtual representation of the endpoints, the predefined virtual representation is a data structure setting forth an organization of tasks and endpoints included in the global collection of endpoints and the user specification defines the set of endpoints without a user specification of a particular endpoint; and defining a group of endpoints in dependence upon the predefined virtual representation of the endpoints and the user specification.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: February 2, 2016
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Michael A. Blocksome, Joseph D. Ratterman, Brian E. Smith, Hanghong Xue
  • Patent number: 9250948
    Abstract: A parallel computer executes a number of tasks, each task includes a number of endpoints and the endpoints are configured to support collective operations. In such a parallel computer, establishing a group of endpoints receiving a user specification of a set of endpoints included in a global collection of endpoints, where the user specification defines the set in accordance with a predefined virtual representation of the endpoints, the predefined virtual representation is a data structure setting forth an organization of tasks and endpoints included in the global collection of endpoints and the user specification defines the set of endpoints without a user specification of a particular endpoint; and defining a group of endpoints in dependence upon the predefined virtual representation of the endpoints and the user specification.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: February 2, 2016
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Michael A. Blocksome, Joseph D. Ratterman, Brian E. Smith, Hanhong Xue
  • Patent number: 9244734
    Abstract: A system and method for enhancing barrier collective synchronization on a computer system comprises a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program being executed by a processor. The system includes providing a plurality of communicators for storing state information for a barrier algorithm. Each communicator designates a master core in a multi-processor environment of the computer system. The system allocates or designates one counter for each of a plurality of threads. The system configures a table with a number of entries equal to the maximum number of threads. The system sets a table entry with an ID associated with a communicator when a process thread initiates a collective. The system determines an allocated or designated counter by searching entries in the table.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: January 26, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michael Blocksome, Sameer Kumar, Amith R. Mamidala, Douglas Miller, Joseph D. Ratterman
  • Publication number: 20160011996
    Abstract: A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.
    Type: Application
    Filed: April 30, 2015
    Publication date: January 14, 2016
    Inventors: Sameh Asaad, Ralph E. Bellofatto, Michael A. Blocksome, Matthias A. Blumrich, Peter Boyle, Jose R. Brunheroto, Dong Chen, Chen-Yong Cher, George L. Chiu, Norman Christ, Paul W. Coteus, Kristan D. Davis, Gabor J. Dozsa, Alexandre E. Eichenberger, Noel A. Eisley, Matthew R. Ellavsky, Kahn C. Evans, Bruce M. Fleischer, Thomas W. Fox, Alan Gara, Mark E. Giampapa, Thomas M. Gooding, Michael K. Gschwind, John A. Gunnels, Shawn A. Hall, Rudolf A. Haring, Philip Heidelberger, Todd A. Inglett, Brant L. Knudson, Gerard V. Kopcsay, Sameer Kumar, Amith R. Mamidala, James A. Marcella, Mark G. Megerian, Douglas R. Miller, Samuel J. Miller, Adam J. Muff, Michael B. Mundy, John K. O'Brien, Kathryn M. O'Brien, Martin Ohmacht, Jeffrey J. Parker, Ruth J. Poole, Joseph D. Ratterman, Valentina Salapura, David L. Satterfield, Robert M. Senger, Burkhard Steinmacher-Burow, William M. Stockdell, Craig B. Stunkel, Krishnan Sugavanam, Yutaka Sugawara, Todd E. Takken, Barry M. Trager, James L. Van Oosten, Charles D. Wait, Robert E. Walkup, Alfred T. Watson, Robert W. Wisniewski, Peng Wu
  • Patent number: 9158602
    Abstract: Processing posted receive commands in a parallel computer, including: posting, by a parallel process of a compute node, a receive command, the receive command including a set of parameters excluding the receive command from being directed among parallel posted receive queues; flattening the parallel unexpected message queues into a single unexpected message queue; determining whether the posted receive command is satisfied by an entry in the single unexpected message queue; if the posted receive command is satisfied by an entry in the single unexpected message queue, processing the posted receive command; if the posted receive command is not satisfied by an entry in the single unexpected message queue: flattening the parallel posted receive queues into a single posted receive queue; and storing the posted receive command in the single posted receive queue.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 13, 2015
    Assignee: Intermational Business Machines Corporation
    Inventors: Sameer Kumar, Amith R. Mamidala, Joseph D. Ratterman, Brian E. Smith
  • Patent number: 9152481
    Abstract: Processing posted receive commands in a parallel computer, including: posting, by a parallel process of a compute node, a receive command, the receive command including a set of parameters excluding the receive command from being directed among parallel posted receive queues; flattening the parallel unexpected message queues into a single unexpected message queue; determining whether the posted receive command is satisfied by an entry in the single unexpected message queue; if the posted receive command is satisfied by an entry in the single unexpected message queue, processing the posted receive command; if the posted receive command is not satisfied by an entry in the single unexpected message queue: flattening the parallel posted receive queues into a single posted receive queue; and storing the posted receive command in the single posted receive queue.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: October 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Sameer Kumar, Amith R. Mamidala, Joseph D. Ratterman, Brian E. Smith
  • Patent number: 9116750
    Abstract: Methods, apparatuses, and computer program products for optimizing collective communications within a parallel computer comprising a plurality of hardware threads for executing software threads of a parallel application are provided. Embodiments include a processor of a parallel computer determining for each software thread, an affinity of the software thread to a particular hardware thread. Each affinity indicates an assignment of a software thread to a particular hardware thread. The processor also generates one or more affinity domains based on the affinities of the software threads. Embodiments also include a processor generating, for each affinity domain, a topology of the affinity domain based on the affinities of the software threads to the hardware threads. According to embodiments of the present application, a processor also performs, based on the generated topologies of the affinity domains, a collective operation on one or more software threads.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: August 25, 2015
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Michael A. Blocksome, Joseph D. Ratterman, Brian E. Smith
  • Patent number: 9081501
    Abstract: A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC).
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: July 14, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sameh Asaad, Ralph E. Bellofatto, Michael A. Blocksome, Matthias A. Blumrich, Peter Boyle, Jose R. Brunheroto, Dong Chen, Chen-Yong Cher, George L. Chiu, Norman Christ, Paul W. Coteus, Kristan D. Davis, Gabor J. Dozsa, Alexandre E. Eichenberger, Noel A. Eisley, Matthew R. Ellavsky, Kahn C. Evans, Bruce M. Fleischer, Thomas W. Fox, Alan Gara, Mark E. Giampapa, Thomas M. Gooding, Michael K. Gschwind, John A. Gunnels, Shawn A. Hall, Rudolf A. Haring, Philip Heidelberger, Todd A. Inglett, Brant L. Knudson, Gerard V. Kopcsay, Sameer Kumar, Amith R. Mamidala, James A. Marcella, Mark G. Megerian, Douglas R. Miller, Samuel J. Miller, Adam J. Muff, Michael B. Mundy, John K. O'Brien, Kathryn M. O'Brien, Martin Ohmacht, Jeffrey J. Parker, Ruth J. Poole, Joseph D. Ratterman, Valentina Salapura, David L. Satterfield, Robert M. Senger, Brian Smith, Burkhard Steinmacher-Burow, William M. Stockdell, Craig B. Stunkel, Krishnan Sugavanam, Yutaka Sugawara, Todd E. Takken, Barry M. Trager, James L. Van Oosten, Charles D. Wait, Robert E. Walkup, Alfred T. Watson, Robert W. Wisniewski, Peng Wu
  • Patent number: 9047091
    Abstract: Collective operation protocol selection in a parallel computer that includes compute nodes may be carried out by calling a collective operation with operating parameters; selecting a protocol for executing the operation and executing the operation with the selected protocol. Selecting a protocol includes: iteratively, until a prospective protocol meets predetermined performance criteria: providing, to a protocol performance function for the prospective protocol, the operating parameters; determining whether the prospective protocol meets predefined performance criteria by evaluating a predefined performance fit equation, calculating a measure of performance of the protocol for the operating parameters; determining that the prospective protocol meets predetermined performance criteria and selecting the protocol for executing the operation only if the calculated measure of performance is greater than a predefined minimum performance threshold.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: June 2, 2015
    Assignee: International Business Machines Corporation
    Inventors: Charles J. Archer, Michael A. Blocksome, Joseph D. Ratterman, Brian E. Smith
  • Patent number: 8990450
    Abstract: Managing a direct memory access (‘DMA’) injection first-in-first-out (‘FIFO’) messaging queue in a parallel computer, including: inserting, by a messaging unit management module, a DMA message descriptor into the injection FIFO messaging queue; determining, by the messaging unit management module, the number of extra slots in an immediate messaging queue required to store DMA message data associated with the DMA message descriptor; and responsive to determining that the number of extra slots in the immediate message queue required to store the DMA message data is greater than one, inserting, by the messaging unit management module, a number of DMA dummy message descriptors into the injection FIFO messaging queue, wherein the number of DMA dummy message descriptors is at least as many as the number of extra slots in the immediate messaging queue that are required to store the DMA message data.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Michael A. Blocksome, Todd A. Inglett, Patrick J. McCarthy, Joseph D. Ratterman, Brian E. Smith