Patents by Inventor Joseph J. Grenci

Joseph J. Grenci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130273290
    Abstract: Polyarylene sulfide compositions are described that exhibit high strength and flexibility. Methods for forming the polyarylene sulfide compositions are also described. Formation methods include dynamic vulcanization of a polyarylene sulfide composition that includes an impact modifier dispersed throughout the polyarylene sulfide. A crosslinking agent is combined with the other components of the composition following dispersal of the impact modifier throughout the composition. The crosslinking agent reacts with the impact modifier to form crosslinks within and among the polymer chains of the impact modifier. The compositions can exhibit excellent physical characteristics at extreme temperatures and can be used to form, e.g., tubular member such as pipes and hoses and fibers.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 17, 2013
    Inventors: Rong Luo, Joseph J. Grenci, Christopher McGrady, Xinyu Zhao
  • Publication number: 20130269819
    Abstract: Pipe sections and methods for forming pipe sections are disclosed. A pipe section includes a hollow body formed from a metal material, the hollow body having an inner surface and an outer surface, the inner surface defining an interior. The pipe section further includes a barrier layer surrounding and bonded to the hollow body, the barrier layer having an inner surface and an outer surface. The barrier layer is formed from a continuous fiber reinforced thermoplastic material. Such pipe sections may be lightweight and flexible while exhibiting improved strength characteristics.
    Type: Application
    Filed: April 15, 2013
    Publication date: October 17, 2013
    Applicant: Ticona LLC
    Inventors: Michael A. Ruby, David W. Eastep, Aaron H. Johnson, Rong Luo, Joseph J. Grenci, Christopher McGrady, Xinyu Zhao
  • Publication number: 20130062558
    Abstract: A molded part having a predetermined shape is provided. The molded part may be formed by casting a liquid crystalline polymer composition into a mold cavity at a relatively low shear rate. Due to the use of a relatively low shear rate, the polymer composition does not generally undergo extensive shear orientation, which can allow the resulting part to be further processed using standard finishing techniques. The ability to use relatively low shear rates during casting is achieved in the present invention through the use of an aromatic amide oligomer. More particularly, the present inventors have discovered that the aromatic amide oligomer can serve as a flow aid by altering intermolecular polymer chain interactions, thereby lowering the overall viscosity of the polymer matrix to “ultralow” levels without having a significant impact on the mechanical properties.
    Type: Application
    Filed: August 27, 2012
    Publication date: March 14, 2013
    Applicant: TICONA LLC
    Inventors: Kamlesh P. Nair, Steven D. Gray, Joseph J. Grenci
  • Publication number: 20130052447
    Abstract: A polymer composition that contains a thermotropic liquid crystalline polymer, fibrous filler (e.g., glass fibers), and a flow aid is provided. The flow aid is in the form of an aromatic amide oligomer which, due to its unique nature and properties, has the ability to dramatically reduce melt viscosity with only a minimal degree of blending with the polymer. More particularly, the fibrous filler is supplied to an extruder in conjunction with the polymer and/or at a location downstream thereof so that the polymer is still in a solid or solid-like state when it initially contacts the filler. In this manner, the fibrous filler and polymer are allowed to mix together while the composition still has a relatively high melt viscosity, which helps to uniformly disperse the fibrous filler within the polymer matrix. After a certain period of time, the aromatic amide oligomer is then supplied to the extruder at a location downstream from the fibrous filler to reduce the melt viscosity of the composition.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 28, 2013
    Applicant: TICONA LLC
    Inventors: Joseph J. Grenci, Kamlesh P. Nair
  • Publication number: 20130048908
    Abstract: A thermotropic liquid crystalline polymer composition capable of exhibiting both a low melting temperature and good heat resistance without the use of conventional naphthenic acids is provided. The melting temperature may, for example, range from about 250° C. to about 400° C. Even at such low melting temperatures, the present inventors have surprisingly discovered that the ratio of the deflection temperature under load (“DTUL”), a measure of short term heat resistance, to the melting temperature may remain relatively high. The specific DTUL values may range from about 200° C. to about 300° C. The ability to form a polymer composition with the properties noted above may be achieved, at least in part, by the use of an aromatic amide oligomer.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 28, 2013
    Applicant: TICONA LLC
    Inventors: Steven D. Gray, Kamlesh P. Nair, Joseph J. Grenci
  • Publication number: 20130048914
    Abstract: A liquid crystalline polymer composition that contains a liquid crystalline polymer and an aromatic amide oligomer is provided. The oligomer can serve as a flow aid by altering intermolecular polymer chain interactions, thereby lowering the overall viscosity of the polymer matrix under shear. The oligomer is also not easily volatized or decomposed during compounding, molding, and/or use, which minimizes off-gassing and the formation of blisters that would otherwise impact the final mechanical properties of a part made from the polymer composition. While providing the benefits noted, the aromatic amide oligomer does not generally react with the polymer backbone of the liquid crystalline polymer to any appreciable extent so that the mechanical properties of the polymer are not adversely impacted.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 28, 2013
    Applicant: TICONA LLC
    Inventors: Kamlesh P. Nair, Joseph J. Grenci, Sayanti Basu, Steven D. Gray
  • Publication number: 20130048909
    Abstract: A liquid crystalline polymer composition that contains a liquid crystalline polymer and an aromatic amide oligomer is provided. The oligomer can serve as a flow aid by altering intermolecular polymer chain interactions, thereby lowering the overall viscosity of the polymer matrix under shear. The oligomer is also not easily volatized or decomposed during compounding, molding, and/or use, which minimizes off-gassing and the formation of blisters that would otherwise impact the final mechanical properties of a part made from the polymer composition. While providing the benefits noted, the aromatic amide oligomer does not generally react with the polymer backbone of the liquid crystalline polymer to any appreciable extent so that the mechanical properties of the polymer are not adversely impacted.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 28, 2013
    Applicant: TICONA LLC
    Inventors: Kamlesh P. Nair, Joseph J. Grenci, Steven D. Gray