Patents by Inventor Joseph L. Womack

Joseph L. Womack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230366094
    Abstract: An apparatus for depositing film stacks in-situ (i.e., without a vacuum break or air exposure) are described. In one example, a plasma-enhanced chemical vapor deposition apparatus configured to deposit a plurality of film layers on a substrate without exposing the substrate to a vacuum break between film deposition phases, is provided. The apparatus includes a process chamber, a plasma source and a controller configured to control the plasma source to generate reactant radicals using a particular reactant gas mixture during the particular deposition phase, and sustain the plasma during a transition from the particular reactant gas mixture supplied during the particular deposition phase to a different reactant gas mixture supplied during a different deposition phase.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 16, 2023
    Inventors: Jason Dirk Haverkamp, Pramod Subramonium, Joseph L. Womack, Dong Niu, Keith Fox, John B. Alexy, Patrick G. Breiling, Jennifer L. Petraglia, Mandyam A. Sriram, George Andrew Antonelli, Bart J. van Schravendijk
  • Patent number: 11746420
    Abstract: An apparatus for depositing film stacks in-situ (i.e., without a vacuum break or air exposure) are described. In one example, an apparatus configured to deposit a plurality of film layers having different compositions on a substrate without exposing the substrate to a vacuum break between film deposition phases, is provided. The apparatus includes a process chamber, a plasma source and a process station reactant feed fluidically coupled to a gas inlet of the process station, and fluidically coupled to an inert gas delivery line, a first reactant mixture gas delivery line and a second reactant mixture gas delivery line such that the first reactant gas mixture and the second reactant gas mixture can be introduced sequentially into the process station reactant feed, and supplied via a shared path to the process station.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: September 5, 2023
    Assignee: Novellus Systems, Inc.
    Inventors: Pramod Subramonium, Joseph L. Womack, Dong Niu, Keith Fox
  • Publication number: 20220228263
    Abstract: Methods and apparatuses are provided herein for independently adjusting flowpath conductance. One multi-station processing apparatus may include a processing chamber, a plurality of process stations in the processing chamber that each include a showerhead having a gas inlet, and a gas delivery system including a junction point and a plurality of flowpaths, in which each flowpath includes a flow element, includes a temperature control unit that is thermally connected with the flow element and that is controllable to change the temperature of that flow element, and fluidically connects one corresponding gas inlet of a process station to the junction point such that each process station of the plurality of process stations is fluidically connected to the junction point by a different flowpath.
    Type: Application
    Filed: May 22, 2020
    Publication date: July 21, 2022
    Inventors: Michael Philip Roberts, Brian Joseph Williams, Francisco J. Juarez, Rachel E. Batzer, Ramesh Chandrasekharan, Richard Phillips, Nuoya Yang, Joseph L. Womack, Ming Li, Jun Qian, Tu Hong, Sky Mullenaux
  • Publication number: 20190376186
    Abstract: An apparatus for depositing film stacks in-situ (i.e., without a vacuum break or air exposure) are described. In one example, a plasma-enhanced chemical vapor deposition apparatus configured to deposit a plurality of film layers on a substrate without exposing the substrate to a vacuum break between film deposition phases, is provided. The apparatus includes a process chamber, a plasma source and a controller configured to control the plasma source to generate reactant radicals using a particular reactant gas mixture during the particular deposition phase, and sustain the plasma during a transition from the particular reactant gas mixture supplied during the particular deposition phase to a different reactant gas mixture supplied during a different deposition phase.
    Type: Application
    Filed: December 28, 2018
    Publication date: December 12, 2019
    Inventors: Jason Dirk Haverkamp, Pramod Subramonium, Joseph L. Womack, Dong Niu, Keith Fox, John B. Alexy, Patrick G. Breiling, Jennifer Leigh Petraglia, Mandyam Ammanjee Sriram, George Andrew Antonelli, Bart J. van Schravendijk
  • Patent number: 10214816
    Abstract: An apparatus for depositing film stacks in-situ (i.e., without a vacuum break or air exposure) are described. In one example, a plasma-enhanced chemical vapor deposition apparatus configured to deposit a plurality of film layers on a substrate without exposing the substrate to a vacuum break between film deposition phases, is provided. The apparatus includes a process chamber, a plasma source and a controller configured to control the plasma source to generate reactant radicals using a particular reactant gas mixture during the particular deposition phase, and sustain the plasma during a transition from the particular reactant gas mixture supplied during the particular deposition phase to a different reactant gas mixture supplied during a different deposition phase.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: February 26, 2019
    Assignee: Novellus Systems, Inc.
    Inventors: Jason Dirk Haverkamp, Pramod Subramonium, Joseph L. Womack, Dong Niu, Keith Fox, John B. Alexy, Patrick G. Breiling, Jennifer L. Petraglia, Mandyam A. Sriram, George Andrew Antonelli, Bart J. van Schravendijk
  • Publication number: 20150325435
    Abstract: Smooth silicon films having low compressive stress and smooth tensile silicon films are deposited by plasma enhanced chemical vapor deposition (PECVD) using a process gas comprising a silicon-containing precursor (e.g., silane), argon, and a second gas, such as helium, hydrogen, or a combination of helium and hydrogen. Doped smooth silicon films and smooth silicon germanium films can be obtained by adding a source of dopant or a germanium-containing precursor to the process gas. In some embodiments dual frequency plasma comprising high frequency (HF) and low frequency (LF) components is used during deposition, resulting in improved film roughness. The films are characterized by roughness (Ra) of less than about 7 ?, such as less than about 5 ? as measured by atomic force microscopy (AFM), and a compressive stress of less than about 500 MPa in absolute value. In some embodiments smooth tensile silicon films are obtained.
    Type: Application
    Filed: July 17, 2015
    Publication date: November 12, 2015
    Inventors: Alice G. Hollister, Sirish K. Reddy, Keith Fox, Mandyam Sriram, Joseph L. Womack
  • Patent number: 9165788
    Abstract: The methods and apparatus disclosed herein concern a process that may be referred to as a “soft anneal.” A soft anneal provides various benefits. Fundamentally, it reduces the internal stress in one or more silicon layers of a work piece. Typically, though not necessarily, the internal stress is a compressive stress. A particularly beneficial application of a soft anneal is in reduction of internal stress in a stack containing two or more layers of silicon. Often, the internal stress of a layer or group of layers in a stack is manifest as wafer bow. The soft anneal process can be used to reduce compressive bow in stacks containing silicon. The soft anneal process may be performed without causing the silicon in the stack to become activated.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: October 20, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Keith Fox, Bart J. Van Schravendijk, Dong Niu, Lucas B. Henderson, Joseph L. Womack
  • Publication number: 20150013607
    Abstract: An apparatus for depositing film stacks in-situ (i.e., without a vacuum break or air exposure) are described. In one example, a plasma-enhanced chemical vapor deposition apparatus configured to deposit a plurality of film layers on a substrate without exposing the substrate to a vacuum break between film deposition phases, is provided. The apparatus includes a process chamber, a plasma source and a controller configured to control the plasma source to generate reactant radicals using a particular reactant gas mixture during the particular deposition phase, and sustain the plasma during a transition from the particular reactant gas mixture supplied during the particular deposition phase to a different reactant gas mixture supplied during a different deposition phase.
    Type: Application
    Filed: April 25, 2014
    Publication date: January 15, 2015
    Applicant: Novellus Systems, Inc.
    Inventors: Jason Dirk Haverkamp, Pramod Subramonium, Joseph L. Womack, Dong Niu, Keith Fox, John B. Alexy, Patrick G. Breiling, Jennifer L. Petraglia, Mandyam A. Sriram, George Andrew Antonelli, Bart J. van Schravendijk
  • Publication number: 20140357064
    Abstract: The method and apparatus disclosed herein relate to preparing a stack structure for an electronic device on a semiconductor substrate. A particularly beneficial application of the method is in reduction of internal stress in a stack containing multiple layers of silicon. Typically, though not necessarily, the internal stress is a compressive stress, which often manifests as wafer bow. In some embodiments, the method reduces the internal stress of a work piece by depositing phosphorus doped silicon layers having low internal compressive stress or even tensile stress. The method and apparatus disclosed herein can be used to reduce compressive bow in stacks containing silicon.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Keith Fox, Dong Niu, Joseph L. Womack
  • Patent number: 8895415
    Abstract: The method and apparatus disclosed herein relate to preparing a stack structure for an electronic device on a semiconductor substrate. A particularly beneficial application of the method is in reduction of internal stress in a stack containing multiple layers of silicon. Typically, though not necessarily, the internal stress is a compressive stress, which often manifests as wafer bow. In some embodiments, the method reduces the internal stress of a work piece by depositing phosphorus doped silicon layers having low internal compressive stress or even tensile stress. The method and apparatus disclosed herein can be used to reduce compressive bow in stacks containing silicon.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: November 25, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Keith Fox, Dong Niu, Joseph L. Womack
  • Publication number: 20130267081
    Abstract: The methods and apparatus disclosed herein concern a process that may be referred to as a “soft anneal.” A soft anneal provides various benefits. Fundamentally, it reduces the internal stress in one or more silicon layers of a work piece. Typically, though not necessarily, the internal stress is a compressive stress. A particularly beneficial application of a soft anneal is in reduction of internal stress in a stack containing two or more layers of silicon. Often, the internal stress of a layer or group of layers in a stack is manifest as wafer bow. The soft anneal process can be used to reduce compressive bow in stacks containing silicon. The soft anneal process may be performed without causing the silicon in the stack to become activated.
    Type: Application
    Filed: April 5, 2013
    Publication date: October 10, 2013
    Inventors: Keith Fox, Bart J. Van Schravendijk, Dong Niu, Lucas B. Henderson, Joseph L. Womack
  • Publication number: 20130157466
    Abstract: The embodiments herein relate to plasma-enhanced chemical vapor deposition methods and apparatus for depositing silicon nitride on a substrate. The disclosed methods provide silicon nitride films having wet etch rates (e.g., in dilute hydrofluoric acid or hot phosphoric acid) suitable for certain applications such as vertical memory devices. Further, the methods provide silicon nitride films having defined levels of internal stress suitable for the applications in question. These silicon nitride film characteristics can be set or tuned by controlling, for example, the composition and flow rates of the precursors, as well as the RF power supplied to the plasma and the pressure in the reactor. In certain embodiments, a boron-containing precursor is added.
    Type: Application
    Filed: February 13, 2013
    Publication date: June 20, 2013
    Inventors: Keith Fox, Dong Niu, Joseph L. Womack, Mandyam Sriram, George Andrew Antonelli, Bart J. van Schravendijk, Jennifer O'Loughlin
  • Patent number: 6524991
    Abstract: A process and catalyst for the direct oxidation of an olefin having three or more carbon atoms, such as propylene, by oxygen to the corresponding olefin oxide, such as propylene oxide. The process involves contacting the olefin with oxygen under reaction conditions in the presence of hydrogen and in the presence of a catalyst. The catalyst comprises gold on a titanosilicate, preferably a microporous or mesoporous titanosilicate, such as, TS-1, TS-2, Ti-beta, Ti-ZSM-48, or Ti-MCM-41. Selectivity to the olefin oxide is high at good conversions of the olefin. The catalyst is readily regenerated, and the time between catalyst regenerations is long.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: February 25, 2003
    Assignee: Dow Global Technologies Inc.
    Inventors: Robert G. Bowman, Joseph L. Womack, Howard W. Clark, Joseph J. Maj, George E. Hartwell
  • Publication number: 20020052290
    Abstract: A process and catalyst for the direct oxidation of an olefin having three or more carbon atoms, such as propylene, by oxygen to the corresponding olefin oxide, such as propylene oxide. The process involves contacting the olefin with oxygen under reaction conditions in the presence of hydrogen and in the presence of a catalyst. The catalyst comprises gold on a titanosilicate, preferably a microporous or mesoporous titanosilicate, such as, TS-1, TS-2, Ti-beta, Ti-ZSM-48, or Ti-MCM-41. Selectivity to the olefin oxide is high at good conversions of the olefin. The catalyst is readily regenerated, and the time between catalyst regenerations is long.
    Type: Application
    Filed: September 26, 2001
    Publication date: May 2, 2002
    Inventors: Robert G. Bowman, Joseph L. Womack, Howard W. Clark, Joseph J. Maj, George E. Hartwell
  • Patent number: 6309998
    Abstract: A process and catalyst for the direct oxidation of an olefin having three or more carbon atoms, such as propylene, by oxygen to the corresponding olefin oxide, such as propylene oxide. The process involves contacting the olefin with oxygen under reaction conditions in the presence of hydrogen and in the presence of a catalyst. The catalyst comprises gold on a titanosilicate, preferably a microporous or mesoporous titanosilicate, such as, TS-1, TS-2, Ti-beta, Ti-ZSM-48, or Ti-MCM-41. Selectivity to the olefin oxide is high at good conversions of the olefin. The catalyst is readily regenerated, and the time between catalyst regenerations is long.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: October 30, 2001
    Assignee: The Dow Chemical Company
    Inventors: Robert G. Bowman, Joseph L. Womack, Howard W. Clark, Joseph J. Maj, George E. Hartwell
  • Patent number: 6031116
    Abstract: A process and catalyst for the direct oxidation of an olefin having three or more carbon atoms, such as propylene, by oxygen to the corresponding olefin oxide, such as propylene oxide. The process involves contacting the olefin with oxygen under reaction conditions in the presence of hydrogen and in the presence of a catalyst. The catalyst comprises gold on a titanosilicate, preferably a microporous or mesoporous titanosilicate, such as, TS-1, TS-2, Ti-beta, Ti-ZSM-48, or Ti-MCM-41. Selectivity to the olefin oxide is high at good conversions of the olefin. The catalyst is readily regenerated, and the time between catalyst regenerations is long.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: February 29, 2000
    Assignee: The Dow Chemical Company
    Inventors: Robert G. Bowman, Joseph L. Womack, Howard W. Clark, Joseph J. Maj, George E. Hartwell