Patents by Inventor Joseph Nuzman

Joseph Nuzman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11500636
    Abstract: Disclosed embodiments relate to spatial and temporal merging of remote atomic operations.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: November 15, 2022
    Assignee: Intel Corporation
    Inventors: Christopher J. Hughes, Joseph Nuzman, Jonas Svennebring, Doddaballapur N. Jayasimha, Samantika S. Sury, David A. Koufaty, Niall D. McDonnell, Yen-Cheng Liu, Stephen R. Van Doren, Stephen J. Robinson
  • Publication number: 20220335126
    Abstract: Systems, methods, and apparatuses relating to microarchitectural mechanisms for the prevention of side-channel attacks are disclosed herein. In one embodiment, a processor includes a core having a plurality of physical contexts to execute a plurality of threads, a plurality of structures shared by the plurality of threads, a context mapping structure to map context signatures to respective physical contexts of the plurality of physical contexts, each physical context to identify and differentiate state of the plurality of structures, and a context manager circuit to, when one or more of a plurality of fields that comprise a context signature is changed, search the context mapping structure for a match to another context signature, and when the match is found, a physical context associated with the match is set as an active physical context for the core.
    Type: Application
    Filed: February 1, 2022
    Publication date: October 20, 2022
    Inventors: Robert S. Chappell, Jared W. Stark, IV, Joseph Nuzman, Stephen Robinson, Jason W. Brandt
  • Patent number: 11416281
    Abstract: Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Rajesh M. Sankaran, Gilbert Neiger, Narayan Ranganathan, Stephen R. Van Doren, Joseph Nuzman, Niall D. McDonnell, Michael A. O'Hanlon, Lokpraveen B. Mosur, Tracy Garrett Drysdale, Eriko Nurvitadhi, Asit K. Mishra, Ganesh Venkatesh, Deborah T. Marr, Nicholas P. Carter, Jonathan D. Pearce, Edward T. Grochowski, Richard J. Greco, Robert Valentine, Jesus Corbal, Thomas D. Fletcher, Dennis R. Bradford, Dwight P. Manley, Mark J. Charney, Jeffrey J. Cook, Paul Caprioli, Koichi Yamada, Kent D. Glossop, David B. Sheffield
  • Patent number: 11392380
    Abstract: Systems, methods, and apparatuses relating to circuitry to precisely monitor memory store accesses are described.
    Type: Grant
    Filed: December 28, 2019
    Date of Patent: July 19, 2022
    Assignee: Intel Corporation
    Inventors: Ahmad Yasin, Raanan Sade, Liron Zur, Igor Yanover, Joseph Nuzman
  • Publication number: 20220207147
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and execution circuitry coupled to the decode circuitry. The decode circuitry is to decode a register hardening instruction to mitigate vulnerability to a speculative execution attack. The execution circuitry is to be hardened in response to the register hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220207148
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and branch circuitry coupled to the decode circuitry. The decode circuitry is to decode a branch hardening instruction to mitigate vulnerability to a speculative execution attack. The branch circuitry is to be hardened in response to the branch hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220206818
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and execution circuitry coupled to the decode circuitry. The decode circuitry is to decode a single instruction to mitigate vulnerability to a speculative execution attack. The execution circuitry is to be hardened in response to the single instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Alaa Alameldeen, Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220207149
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes speculation vulnerability detection hardware and execution hardware. The speculation vulnerability detection hardware is to detect vulnerability to a speculative execution attack and, in connection with a detection of vulnerability to a speculative execution attack, to provide an indication that data from a first operation is tainted. The execution hardware is to perform a second operation using the data if the second operation is to be performed non-speculatively and to prevent performance of the second operation if the second operation is to be performed speculatively and the data is tainted.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Jason W. Brandt, Joseph Nuzman, Asit Mallick, Carlos Rozas
  • Publication number: 20220207154
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes a hybrid key generator and memory protection hardware. The hybrid key generator is to generate a hybrid key based on a public key and multiple process identifiers. Each of the process identifiers corresponds to one or more memory spaces in a memory. The memory protection hardware is to use the first hybrid key to protect to the memory spaces.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Richard Winterton, Mohammad Reza Haghighat, Asit Mallick, Alaa Alameldeen, Abhishek Basak, Jason W. Brandt, Michael Chynoweth, Carlos Rozas, Scott Constable, Martin Dixon, Matthew Fernandez, Fangfei Liu, Francis McKeen, Joseph Nuzman, Gilles Pokam, Thomas Unterluggauer, Xiang Zou
  • Publication number: 20220207138
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes a decode circuitry and store circuitry coupled to the decode circuitry. The decode circuitry is to decode a store hardening instruction to mitigate vulnerability to a speculative execution attack. The store circuitry is to be hardened in response to the store hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220207146
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and load circuitry coupled to the decode circuitry. The decode circuitry is to decode a load hardening instruction to mitigate vulnerability to a speculative execution attack. The load circuitry is to be hardened in response to the load hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220197808
    Abstract: In one embodiment, a processor includes: one or more execution circuits to execute instructions; a stream prediction circuit coupled to the one or more execution circuits, the stream prediction circuit to receive demand requests for information and, based at least in part on the demand requests, generate a page prefetch hint for a first page; and a prefetcher circuit to generate first prefetch requests each for a cache line, the stream prediction circuit decoupled from the prefetcher circuit. Other embodiments are described and claimed.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: HANNA ALAM, JOSEPH NUZMAN
  • Publication number: 20220197797
    Abstract: An embodiment of an integrated circuit may comprise a core, and a cache controller coupled to the core, the cache controller including circuitry to identify data from a working set for dynamic inclusion in a next level cache based on an amount of re-use of the next level cache, send a shared copy of the identified data to a requesting core of one or more processor cores, and maintain a copy of the identified data in the next level cache. Other embodiments are disclosed and claimed.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Ayan Mandal, Leon Polishuk, Oz Shitrit, Joseph Nuzman
  • Publication number: 20220164218
    Abstract: Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
    Type: Application
    Filed: July 21, 2021
    Publication date: May 26, 2022
    Inventors: Rajesh M. SANKARAN, Gilbert NEIGER, Narayan RANGANATHAN, Stephen R. VAN DOREN, Joseph NUZMAN, Niall D. MCDONNELL, Michael A. O'HANLON, Lokpraveen B. MOSUR, Tracy Garrett DRYSDALE, Eriko NURVITADHI, Asit K. MISHRA, Ganesh VENKATESH, Deborah T. MARR, Nicholas P. CARTER, Jonathan D. PEARCE, Edward T. GROCHOWSKI, Richard J. GRECO, Robert VALENTINE, Jesus CORBAL, Thomas D. FLETCHER, Dennis R. BRADFORD, Dwight P. MANLEY, Mark J. CHARNEY, Jeffrey J. COOK, Paul CAPRIOLI, Koichi YAMADA, Kent D. GLOSSOP, David B. SHEFFIELD
  • Publication number: 20220091851
    Abstract: In one embodiment, a processor includes: a decode circuit to decode a load instruction that is to load an operand to a destination register, the decode circuit to generate at least one fencing micro-operation (?op) associated with the destination register; and a scheduler circuit coupled to the decode circuit. The scheduler circuit is to prevent speculative execution of one or more instructions that consume the operand in response to the at least one fencing ?op. Other embodiments are described and claimed.
    Type: Application
    Filed: September 23, 2020
    Publication date: March 24, 2022
    Inventors: FANGFEI LIU, ALAA ALAMELDEEN, ABHISHEK BASAK, SCOTT CONSTABLE, FRANCIS MCKEEN, JOSEPH NUZMAN, CARLOS ROZAS, THOMAS UNTERLUGGAUER, XIANG ZOU
  • Patent number: 11249909
    Abstract: Systems and methods to predict and prefetch a cache access based on a delta pattern are disclosed. The delta pattern may comprise a sequence of differences between first and second cache accesses within a page. In one example, a processor includes execution circuitry to extract a delta history corresponding to a delta pattern associated with one or more previous cache accesses corresponding to a page of memory. The processor execution circuitry further generates a bucketed delta history based on the delta history corresponding to the page of memory and selects a prediction entry based on the bucketed delta history. The processor execution circuitry then identifies one or more prefetch candidates based on a confidence threshold, with the confidence threshold indicating one or more probable delta patterns, and filters the one or more prefetch candidates. Prefetch circuitry of the processor then predicts and prefetches a cache access based the one or more prefetch candidates.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: February 15, 2022
    Assignee: Intel Corporation
    Inventors: Hanna Alam, Joseph Nuzman
  • Patent number: 11238155
    Abstract: Systems, methods, and apparatuses relating to microarchitectural mechanisms for the prevention of side-channel attacks are disclosed herein. In one embodiment, a processor includes a core having a plurality of physical contexts to execute a plurality of threads, a plurality of structures shared by the plurality of threads, a context mapping structure to map context signatures to respective physical contexts of the plurality of physical contexts, each physical context to identify and differentiate state of the plurality of structures, and a context manager circuit to, when one or more of a plurality of fields that comprise a context signature is changed, search the context mapping structure for a match to another context signature, and when the match is found, a physical context associated with the match is set as an active physical context for the core.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: February 1, 2022
    Assignee: Intel Corporation
    Inventors: Robert S. Chappell, Jared W. Stark, IV, Joseph Nuzman, Stephen Robinson, Jason W. Brandt
  • Publication number: 20220012059
    Abstract: Systems, methods, and apparatuses relating to instructions to compartmentalize memory accesses and execution (e.g., non-speculative and speculative) are described.
    Type: Application
    Filed: June 7, 2021
    Publication date: January 13, 2022
    Inventors: Ravi Sahita, Deepak Gupta, Vedvyas Shanbhogue, David Hansen, Jason W. Brandt, Joseph Nuzman, Mingwei Zhang
  • Patent number: 11093277
    Abstract: Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: August 17, 2021
    Assignee: Intel Corporation
    Inventors: Rajesh M. Sankaran, Gilbert Neiger, Narayan Ranganathan, Stephen R. Van Doren, Joseph Nuzman, Niall D. McDonnell, Michael A. O'Hanlon, Lokpraveen B. Mosur, Tracy Garrett Drysdale, Eriko Nurvitadhi, Asit K. Mishra, Ganesh Venkatesh, Deborah T. Marr, Nicholas P. Carter, Jonathan D. Pearce, Edward T. Grochowski, Richard J. Greco, Robert Valentine, Jesus Corbal, Thomas D. Fletcher, Dennis R. Bradford, Dwight P. Manley, Mark J. Charney, Jeffrey J. Cook, Paul Caprioli, Koichi Yamada, Kent D. Glossop, David B. Sheffield
  • Publication number: 20210200547
    Abstract: Systems, methods, and apparatuses relating to circuitry to precisely monitor memory store accesses are described.
    Type: Application
    Filed: December 28, 2019
    Publication date: July 1, 2021
    Inventors: Ahmad YASIN, Raanan SADE, Liron ZUR, Igor YANOVER, Joseph NUZMAN