Patents by Inventor Joseph P. Hammang

Joseph P. Hammang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6294346
    Abstract: A culture method for determining the effect of a biological agent on multipotent neural stem cell progeny is provided. In the presence of growth factors, multipotent neural stem cells are induced to proliferate in culture. The multipotent neural stem cells may be obtained from normal neural tissue or from a donor afflicted with a disease such as Alzheimer's Disease, Parkinson's Disease or Down's Syndrome. At various stages in the differentiation process of the multipotent neural stem cell progeny, the effects of a biological agent, such as a virus, protein, peptide, amino acid, lipid, carbohydrate, nucleic acid or a drug or pro-drug on cell activity are determined. Additionally, a method of screening the effects of biological agents on a clonal population of neural cells is provided. The technology provides an efficient method for the generation of large numbers of pre- and post-natal neural cells under controlled, defined conditions.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 25, 2001
    Assignee: Neurospheres Holdings, Ltd.
    Inventors: Samuel Weiss, Brent Reynolds, Joseph P. Hammang, E. Edward Baetge
  • Patent number: 6264941
    Abstract: This invention provides improved devices and methods for long-term, stable expression of a biologically active molecule using a biocompatible capsule containing genetically engineered cells for the effective delivery of biologically active molecules to effect or enhance a biological function within a mammalian host. The novel capsules of this invention are biocompatible and are easily retrievable. This invention specifically provides improved methods and compositions which utilize cells transfected with recombinant DNA molecules comprising DNA sequences coding for biologically active molecules operatively linked to promoters that are not subject to down regulation in vivo upon implantation into a mammalian host. Furthermore, the methods of this invention allow for the long-term, stable and efficacious delivery of biologically active molecules from living cells to specific sites within a given mammal.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: July 24, 2001
    Assignee: Neurotech S.A.
    Inventors: Edward E. Baetge, Joseph P. Hammang, Frank T. Gentile, Mark D. Lindner, Shelley R. Winn, Dwaine F. Emerich
  • Patent number: 6225448
    Abstract: This invention provides cells containing recombinant polynucleotides coding for cell surface molecules that, when expressed in the cell, result in rejection of the cell by the host immune system. The invention also provides methods of using such cells, and capsules for delivery of biologically active molecules to a patient.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: May 1, 2001
    Assignee: Neurotech S.A.
    Inventors: Weng Tao, Shou Wong, William F. Hickey, Joseph P. Hammang, E. Edward Baetge
  • Patent number: 6197294
    Abstract: This invention provides cells containing recombinant polynucleotides coding for cell surface molecules that, when expressed in the cell, result in rejection of the cell by the host immune system. The invention also provides methods of using such cells, and capsules for delivery of biologically active molecules to a patient.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: March 6, 2001
    Assignee: Neurotech S.A.
    Inventors: Weng Tao, Shou Wong, William F. Hickey, Joseph P. Hammang, E. Edward Baetge
  • Patent number: 6071889
    Abstract: Methods for administering genetic material to dividing neural precursor cell populations in vivo are provided. The genetic material may comprise useful genes for neurotransmitters, growth factors, growth factor receptors, and the like. The genetic material is administered to the brain with one or more growth factors. The growth factors induce proliferation of neural precursor cells, thereby facilitating the incorporation of the genetic material into the cell progeny.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 6, 2000
    Assignee: NeuroSpheres Holdings Ltd.
    Inventors: Samuel Weiss, Brent Reynolds, Joseph P. Hammang, E. Edward Baetge
  • Patent number: 6027721
    Abstract: Methods and devices are provided for gene therapy using encapsulated packaging cell lines to deliver viral particles carrying at least one heterologous gene encoding at least one biologically active molecule.
    Type: Grant
    Filed: May 20, 1996
    Date of Patent: February 22, 2000
    Assignee: Cytotherapeutics, Inc.
    Inventors: Joseph P. Hammang, Patrick Aebischer
  • Patent number: 5935849
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: July 20, 1994
    Date of Patent: August 10, 1999
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5908623
    Abstract: This invention provides improved devices and methods for long-term, stable expression of a biologically active molecule using a biocompatible capsule containing genetically engineered cells for the effective delivery of biologically active molecules to effect or enhance a biological function within a mammalian host. The novel capsules of this invention are biocompatible and are easily retrievable. This invention specifically provides improved methods and compositions which utilize cells transfected with recombinant DNA molecules comprising DNA sequences coding for biologically active molecules operatively linked to promoters that are not subject to down regulation in vivo upon implantation into a mammalian host. Furthermore, the methods of this invention allow for the long-term, stable and efficacious delivery of biologically active molecules from living cells to specific sites within a given mammal.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: June 1, 1999
    Assignee: CytoTherapeutics, Inc.
    Inventors: Edward E. Baetge, Joseph P. Hammang, Frank T. Gentile, Mark D. Lindner, Shelley R. Winn, Dwaine F. Emerich
  • Patent number: 5904144
    Abstract: The present invention provides novel devices and methods for continuous, controlled delivery of a biologically active molecule to the eye, either intraocularly or periocularly, to treat ophthalmic disorders. A capsule is surgically placed in the desired location in the eye. The capsule includes cells which produce the biologically active molecule. The capsule also includes a surrounding biocompatible jacket through which the biologically active molecule may diffuse into the eye. This jacket may immunoisolate the encapsulated cells, protecting them from attack by the immune system of the patient.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: May 18, 1999
    Assignee: CytoTherapeutics, Inc.
    Inventors: Joseph P. Hammang, E. Edward Baetge, Peter D. Spear, William G. Tsiaras
  • Patent number: 5858747
    Abstract: Methods and compositions are provided for controlling cell distribution within an implantable bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the bioartificial organ with extracellular matrix molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination. The bioartificial organ typically has a semipermeable membrane encapsulating a cell-containing core, and is preferably immunoisolatory.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: January 12, 1999
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5853717
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: December 29, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5851832
    Abstract: A method for the in vitro proliferation and differentiation of neural stem cells and stem cell progeny comprising the steps of (a) isolating the cells from a mammal, (b) exposing the cells to a culture medium containing a growth factor, (c) inducing the cells to proliferate, and (d) inducing the cells to differentiate is provided.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 22, 1998
    Assignee: Neurospheres, Ltd.
    Inventors: Samuel Weiss, Brent Reynolds, Joseph P. Hammang, E. Edward Baetge
  • Patent number: 5843431
    Abstract: Methods and compositions are provided for controlling cell distribution within an implantable bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the bioartificial organ with extracellular matrix molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: December 1, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5840576
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: November 24, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5833979
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: November 10, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5795790
    Abstract: Methods and compositions are provided for controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the bioartificial organ with extracellular matrix molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: August 18, 1998
    Assignee: Cytotherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5776747
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination. A particular embodiment is directed to derivatizing or adsorbing polyethylene oxide-poly(dimethylsiloxane) copolymer (PEO-PDMS) onto a surface within the bioartificial organ to inhibit cellular attachment.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: July 7, 1998
    Assignee: Cytotherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5750376
    Abstract: A method for producing genetically modified neural cells comprises culturing cells derived from embryonic, juvenile, or adult mammalian neural tissue with one or more growth factors that induce multipotent neural stem cells to proliferate and produce multipotent neural stem cell progeny which include more daughter multipotent neural stem cells and undifferentiated progeny that are capable of differentiating into neurons, astrocytes, and oligodendrocytes. The proliferating neural cells can be transfected with exogenous DNA to produce genetically modified neural stem cell progeny. The genetic modification can be for the production of biologically useful proteins such as growth factor products, growth factor receptors, neurotransmitters, neurotransmitter receptors, neuropeptides and neurotransmitter synthesizing genes.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 12, 1998
    Assignee: NeuroSpheres Holdings Ltd.
    Inventors: Samuel Weiss, Brent Reynolds, Joseph P. Hammang, E. Edward Baetge
  • Patent number: 5676943
    Abstract: This invention provides improved devices and methods for long-term, stable expression of a biologically active molecule using a biocompatible capsule containing genetically engineered cells for the effective delivery of biologically active molecules to effect or enhance a biological function within a mammalian host. The novel capsules of this invention are biocompatible and are easily retrievable. This invention specifically provides improved methods and compositions which utilize cells transfected with recombinant DNA molecules comprising DNA sequences coding for biologically active molecules operatively linked to promoters that are not subject to down regulation in vivo upon implantation into a mammalian host. Furthermore, the methods of this invention allow for the long-term, stable and efficacious delivery of biologically active molecules from living cells to specific sites within a given mammal.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: October 14, 1997
    Assignee: CytoTherapeutics, Inc.
    Inventors: Edward E. Baetge, Joseph P. Hammang, Frank T. Gentile, Mark D. Lindner, Shelley R. Winn, Dwaine F. Emerich
  • Patent number: 5656481
    Abstract: This invention provides improved devices and methods for long-term, stable expression of a biologically active molecule using a biocompatible capsule containing genetically engineered cells for the effective delivery of biologically active molecules to effect or enhance a biological function within a mammalian host. The novel capsules of this invention are biocompatible and are easily retrievable. This invention specifically provides improved methods and compositions which utilize cells transfected with recombinant DNA molecules comprising DNA sequences coding for biologically active molecules operatively linked to promoters that are not subject to down regulation in vivo upon implantation into a mammalian host. Furthermore, the methods of this invention allow for the long-term, stable and efficacious delivery of biologically active molecules from living cells to specific sites within a given mammal.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: August 12, 1997
    Assignee: Cyto Therapeutics, Inc.
    Inventors: Edward E. Baetge, Joseph P. Hammang, Frank T. Gentile, Mark D. Lindner, Shelley R. Winn, Dwaine F. Emerich