Patents by Inventor Joseph Stevick

Joseph Stevick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140083645
    Abstract: Exemplary embodiments described herein relate to methods and systems for casting metal alloys into articles such as BMG articles. In one embodiment, processes involved for storing, pre-treating, alloying, melting, injecting, molding, etc. can be combined as desired and conducted in different chambers. During these processes, each chamber can be independently, separately controlled to have desired chamber environment, e.g., under vacuum, in an inert gas environment, or open to the surrounding environment. Due to the flexible, independent control of each chamber, the casting cycle time can be reduced and the production throughput can be increased. Contaminations of the molten materials and thus the final products are reduced or eliminated.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140083646
    Abstract: The embodiments described herein relate to methods and apparatus for counter-gravity formation of BMG-containing hollow parts. In one embodiment, the BMG-containing hollow parts may be formed by first feeding a molten metal alloy in a counter-gravity direction into a mold cavity to deposit the molten metal alloy on a surface of the mold cavity and then solidifying the deposited molten metal alloy.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: THEODORE A. WANIUK, JOSEPH STEVICK, SEAN O'KEEFFE, DERMOT J. STRATTON, JOSEPH C. POOLE, MATTHEW S. SCOTT, CHRISTOPHER D. PREST
  • Publication number: 20140083638
    Abstract: Disclosed is a vessel for melting and casting meltable materials. The vessel may be a surface temperature regulated vessel for providing a substantially non-wetting interface with the molten materials. In one embodiment, the vessel may include one or more temperature regulating channels configured to flow a fluid therein for regulating a surface temperature of the vessel such that molten materials are substantially non-wetting at the interface with the vessel. Disclosed also includes systems and methods for melting and casting meltable materials using the vessel.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140083641
    Abstract: Various embodiments provide apparatus and methods for melting and introducing alloy feedstock for molding by using a hollow branch having a constraint mechanism therein. In one embodiment, a hollow branch can extend upward from a cold chamber that is substantially horizontally configured. The hollow branch including a constraint mechanism can be capable of containing an alloy feedstock for melting into the molten alloy in the hollow branch and introducing the molten alloy to the cold chamber for molding.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermot J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140083640
    Abstract: Various embodiments provide methods and apparatus for forming bulk metallic glass (BMG) articles using a mold having a stationary mold part and a movable mold part paired to form a mold cavity. A molten material can be injected to fill the mold cavity. The molten material can then be cooled into a BMG article at a desired cooling rate. While injecting and/or cooling the molten material, the movement of the movable mold part can be controlled, such that a thermal contact between the molten material and the mold can be maintained. BMG articles can be formed without forming an underfilled part. Additional structural features can be imparted in the BMG article during formation. At least a portion of the formed BMG article can have an aspect ratio (first dimension/second dimension) of at least 10 or less than 0.1.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Theodore A. Waniuk, Joseph Stevick, Sean O'Keeffe, Dermont J. Stratton, Joseph C. Poole, Matthew S. Scott, Christopher D. Prest
  • Publication number: 20140010259
    Abstract: The embodiments described herein relate to BMG parts and related failure detection devices. The BMG parts can be formed of a material including at least one or more amorphous alloys having binary physical properties in response to a temperature. The BMG parts can be configured in failure detection devices, which can be used for controlling and detecting failures, determining mechanical and temperature parameters, and/or providing protection and switching functions to an electronic system that contains the BMG parts and/or the failure detection devices.
    Type: Application
    Filed: July 4, 2012
    Publication date: January 9, 2014
    Inventors: JOSEPH STEVICK, QUOC TRAN PHAM, CHRISTOPHER D. PREST, JOSEPH C. POOLE, THEODORE A. WANIUK
  • Publication number: 20130306198
    Abstract: Described herein is a method of selectively depositing molten bulk metallic glass (BMG). In one embodiment, a continuous stream or discrete droplets of molten BMG is deposited to selected positions. The deposition can be repeated as needed layer by layer. One or more layers of non-BMG can be used as needed.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicants: Crucible Intellectual Property LLC, Apple Inc.
    Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk
  • Publication number: 20130306199
    Abstract: Described herein is a feedstock including a core comprising BMG and a sheath attached the core. The sheath has a different physical property, a different chemical property or both from the core. Alternatively, the feedstock can include a sheath that encloses one or more core comprising BMG. The feedstock can be manufactured by attaching the sheath to the core, shot peening the core, etching the core, ion implanting the core, or applying a coating to the core, etc. The feedstock can be used to make a part by injection molding. The sheath can be used to adjust the composition of the core to reach the composition of the part.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicants: Crucible Intellectual Property LLC, Apple Inc.
    Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk, Quoc Tran Pham
  • Publication number: 20130309121
    Abstract: Described herein are methods of constructing a part using BMG layer by layer. In one embodiment, a layer of BMG powder is deposited to selected positions and then fused to a layer below by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part layer by layer. One or more layers of non-BMG can be used as needed. In one embodiment, layers of BMG can be cut from one or more sheets of BMG to desired shapes, stacked and fused to form the part.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicants: Crucible Intellectual Property LLC, Apple Inc.
    Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk, Quoc Tran Pham
  • Publication number: 20130306201
    Abstract: Embodiments herein relate to a method for forming a bulk solidifying amorphous alloy sheets have different surface finish including a “fire” polish surface like that of a float glass. In one embodiment, a first molten metal alloy is poured on a second molten metal of higher density in a float chamber to form a sheet of the first molten that floats on the second molten metal and cooled to form a bulk solidifying amorphous alloy sheet. In another embodiment, a molten metal is poured on a conveyor conveying the sheet of the first molten metal on a conveyor and cooled to form a bulk solidifying amorphous alloy sheet. The cooling rate such that a time-temperature profile during the cooling does not traverse through a region bounding a crystalline region of the metal alloy in a time-temperature-transformation (TTT) diagram.
    Type: Application
    Filed: July 11, 2013
    Publication date: November 21, 2013
    Inventors: Christopher D. PREST, Joseph C. POOLE, Joseph STEVICK, Theodore Andrew WANIUK, Quoc Tran PHAM
  • Publication number: 20130306197
    Abstract: Described herein is a method of combining discrete pieces of BMG in to a BMG feedstock that has at least one dimension greater than a critical dimension of the BMG, by methods such as thermoplastic forming, pressing, extruding, folding or forging. Other embodiments relate to a bulk metallic glass (BMG) component or feedstock having discrete pieces of a BMG, wherein the BMG component or feedstock has at least one dimension greater than a critical dimension of the BMG.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicants: Crucible Intellectual Property LLC, Apple Inc.
    Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Quoc Tran Pham, Theodore Andrew Waniuk
  • Publication number: 20130306196
    Abstract: Described herein is a feedstock comprising BMG. The feedstock has a surface with an average roughness of at least 200 microns. Also described herein is a feedstock comprising BMG. The feedstock, when supported on a support during a melting process of the feedstock, has a contact area between the feedstock and the support up to 50% of a total area of the support. These feedstocks can be made by molding ingots of BMG into a mole with surface patterns, enclosing one or more cores into a sheath with a roughened surface, chemical etching, laser ablating, machining, grinding, sandblasting, or shot peening. The feedstocks can be used as starting materials in an injection molding process.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Applicants: Crucible Intellectual Property LLC, Apple Inc.
    Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Quoc Tran Pham, Theodore Andrew Waniuk
  • Patent number: 8485245
    Abstract: Embodiments herein relate to a method for forming a bulk solidifying amorphous alloy sheets have different surface finish including a “fire” polish surface like that of a float glass. In one embodiment, a first molten metal alloy is poured on a second molten metal of higher density in a float chamber to form a sheet of the first molten that floats on the second molten metal and cooled to form a bulk solidifying amorphous alloy sheet. In another embodiment, a molten metal is poured on a conveyor conveying the sheet of the first molten metal on a conveyor and cooled to form a bulk solidifying amorphous alloy sheet. The cooling rate such that a time-temperature profile during the cooling does not traverse through a region bounding a crystalline region of the metal alloy in a time-temperature-transformation (TTT) diagram.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: July 16, 2013
    Assignee: Crucible Intellectual Property, LLC
    Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk, Quoc Tran Pham