Patents by Inventor Joseph V. Bonadies

Joseph V. Bonadies has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9356300
    Abstract: A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: May 31, 2016
    Assignee: Delphi Technologies, Inc.
    Inventors: Anthony J. Derose, Karl J. Haltiner, Jr., Russell A. Gudyka, Joseph V. Bonadies, Thomas W. Silvis
  • Patent number: 9017897
    Abstract: A sintered solid composite material is disclosed that includes a metal and a calcium alumina compound. The metal can be a noble metal. This composite material can bond to a ceramic material, and an article is disclosed that includes a first ceramic layer bonded to a second layer of the composite material of metal and calcium alumina compound. The ceramic can be a mixed ionic and electronic conductor (MEIC), and/or have a perovskite crystal structure, and/or be a mixed oxide comprising lanthanum, strontium, cobalt, iron and oxygen. The article can be used as an electrode such as a cathode of a solid oxide fuel cell.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: April 28, 2015
    Assignee: Delphi Technologies, Inc.
    Inventors: Kailash C. Jain, Joseph V. Bonadies, Matthew Osterhout, Rod R. Stilgenbauer
  • Patent number: 9005490
    Abstract: A solid state sintered material is described that includes a mixed oxide of lanthanum, strontium, cobalt, iron and oxygen, and CaCO3 inclusions. The solid state sintered material can also include calcium oxide, which can form from thermal composition of calcium carbonate. The solid state sintered material can also include a pore-forming particulate material such as carbon black and/or a doped ceramic metal oxide ionic conductor such as Sm-doped ceria uniformly dispersed in the solid state sintered material. The solid state sintered material can be formed from a two-step process in which a portion of the CaCO3 is mixed with the mixed oxide materials and heated to form porous agglomerates, and the remaining CaCO3 is added during the formation of a sintering paste. The solid state sintered material described herein can be used as a cathode material for solid oxide fuel cell.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 14, 2015
    Assignee: Delphi Technologies, Inc.
    Inventors: Kailash C. Jain, Rick D. Kerr, Joseph M Keller, Joseph V. Bonadies
  • Publication number: 20150086897
    Abstract: A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 26, 2015
    Inventors: ANTHONY J. DEROSE, KARL J. HALTINER, JR., RUSSELL A. GUDYKA, JOSEPH V. BONADIES, THOMAS W. SILVIS
  • Publication number: 20140166941
    Abstract: A solid state sintered material is described that includes a mixed oxide of lanthanum, strontium, cobalt, iron and oxygen, and CaCO3 inclusions. The solid state sintered material can also include calcium oxide, which can form from thermal composition of calcium carbonate. The solid state sintered material can also include a pore-forming particulate material such as carbon black and/or a doped ceramic metal oxide ionic conductor such as Sm-doped ceria uniformly dispersed in the solid state sintered material. The solid state sintered material can be formed from a two-step process in which a portion of the CaCO3 is mixed with the mixed oxide materials and heated to form porous agglomerates, and the remaining CaCO3 is added during the formation of a sintering paste. The solid state sintered material described herein can be used as a cathode material for solid oxide fuel cell.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: KAILASH C. JAIN, RICK D. KERR, JOSEPH M KELLER, JOSEPH V. BONADIES
  • Publication number: 20140170529
    Abstract: A sintered solid composite material is disclosed that includes a metal and a calcium alumina compound. The metal can be a noble metal. This composite material can bond to a ceramic material, and an article is disclosed that includes a first ceramic layer bonded to a second layer of the composite material of metal and calcium alumina compound. The ceramic can be a mixed ionic and electronic conductor (MEIC), and/or have a perovskite crystal structure, and/or be a mixed oxide comprising lanthanum, strontium, cobalt, iron and oxygen. The article can be used as an electrode such as a cathode of a solid oxide fuel cell.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: Kailash C. JAIN, Joseph V. BONADIES, Matthew OSTERHOUT, Rod R. STILGENBAUER
  • Patent number: 8037674
    Abstract: A NOX abatement system includes a first NOX adsorber capable of being disposed in-line and downstream of and in fluid communication with an engine. The NOX abatement system further includes a selective catalytic reduction catalyst disposed in-line and downstream of, and in direct fluid communication with, the first NOX adsorber. The selective catalytic reduction catalyst is capable of storing ammonia. An off-line reformer is disposed in selective communication with and upstream of the first NOX adsorber and the selective catalytic reduction catalyst. The reformer is capable of producing a reformate that includes primarily hydrogen and carbon monoxide.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: October 18, 2011
    Assignee: Delphi Technologies, Inc.
    Inventors: Joachim Kupe, James Zizelman, Jean J. Botti, Haskell Simpkins, Mark D. Hemingway, William J. LaBarge, Thomas W. Silvis, John E. Kirwan, Joseph V. Bonadies, Kenneth Price
  • Publication number: 20110005206
    Abstract: A system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures comprising a reservoir tank module disposed in a solution storage tank. Solution in the storage tank is heated partially by passage of heat through the walls of the reservoir tank module. Additional heat is derived from waste heat in engine exhaust gas and is added to the system by passing a portion of the exhaust gas stream through a gas/liquid heat exchanger disposed within the solution in the storage tank. The cooled gas is returned to the exhaust system or is sent to the engine intake manifold for EGR.
    Type: Application
    Filed: July 9, 2009
    Publication date: January 13, 2011
    Inventors: Bob X. Li, Joseph V. Bonadies
  • Publication number: 20110005213
    Abstract: A system for keeping a reservoir solution of urea in a liquid state at normally sub-freezing temperatures comprising a reservoir tank module disposed in a solution storage tank. Solution in the storage tank is heated partially by passage of heat through the walls of the reservoir tank module. Additional heat is derived from waste heat in engine exhaust gas and is added to the system either by passing a portion of the exhaust gas stream directly onto or through the solution or by passing air heated by the exhaust gas stream directly onto or through the solution. Alternatively, the hot gas may be impinged onto an outer surface of the storage tank.
    Type: Application
    Filed: July 9, 2009
    Publication date: January 13, 2011
    Inventors: Bob X. Li, Joseph V. Bonadies
  • Patent number: 7861517
    Abstract: A method for controlling temperature of a catalyst. The method includes monitoring temperature of the catalyst and determining that the catalyst is outside of a catalyst operating temperature window. If the catalyst temperature is high enough for exothermic reaction to occur, reformate is injected into the catalyst. If the catalyst not high enough for exothermic reaction to occur, reformate is injected upstream of the catalyst and ignited.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: January 4, 2011
    Assignee: Delphi Technologies, Inc.
    Inventors: David Goulette, Joseph V. Bonadies
  • Patent number: 7767163
    Abstract: An exhaust emission control system can include a reformer a fuel source disposed upstream of and in fluid communication with the reformer, and a NOx adsorber disposed downstream of and in fluid communication with the reformer. The NOx adsorber can include a NOx adsorber catalyst having an acid adsorber disposed on the substrate and a base adsorber disposed over the acid adsorber.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: August 3, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: William J. LaBarge, Kenneth Price, Joseph V. Bonadies, Joachim Kupe
  • Patent number: 7665296
    Abstract: A dual NOx trap system for reducing NOx emissions from an internal combustion engine. The system is plumbed and controlled such that the NOx adsorption time of a trap is decoupled from the NOx regeneration time. A trap is taken out of service for regeneration only for the minimum required regeneration time and then is placed back into service. Because regeneration times are short relative to adsorption times, during most of the working life of the assembly both of the traps are in service in NOx-trapping mode. Thus, higher NOx-trapping efficiencies are provided over most of the working life of the system because each unit volume of catalyst is in service for more than 50% of the time, permitting a smaller volume of catalyst for each trap than in a prior art system. Further, shorter off-line regeneration times result in reduced cooling of the traps during regeneration.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: February 23, 2010
    Assignee: Delphi Technologies, Inc.
    Inventors: Thomas W. Silvis, Joseph V. Bonadies
  • Patent number: 7644578
    Abstract: A vehicle exhaust aftertreatment system for controlling emissions from an engine includes, in serial order: an exhaust outlet from the engine, an exhaust catalyst assembly that is in fluid communication with the exhaust outlet and includes a first NOx component coupled with a downstream oxidation catalyst, and a second NOx adsorber that is downstream from and in fluid communication with the oxidation catalyst of the exhaust catalyst assembly.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: January 12, 2010
    Assignee: Delphi Technologies, Inc.
    Inventors: David A. Goulette, Joseph V. Bonadies
  • Patent number: 7497883
    Abstract: Disclosed herein are fuel reformers utilizing dew point plateau process control and methods of using the same. In one embodiment the fuel reformer can comprise a mixing zone capable of receiving a fuel mixture, a reforming zone disposed downstream from the mixing zone, an exhaust zone disposed downstream from the in operable communication with the reforming zone, a temperature sensor, and a system controller connected in operable communication with the temperature sensor. The temperature sensor can be disposed in fluid communication with the exhaust zone and capable of measuring a gas temperature of the gas stream, or in fluid communication with the mixing zone and capable of measuring a mixture temperature of the fuel mixture. The system controller can be capable of adjusting an operating variable of the fuel reformer and determining a dew point plateau temperature.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: March 3, 2009
    Assignee: Delphi Technologies, Inc.
    Inventors: Joseph V. Bonadies, Gerald T. Fattic
  • Patent number: 7452843
    Abstract: In one embodiment, an exhaust treatment device includes: a substrate, a shell disposed around the substrate, and a retention material disposed between the shell and the substrate. The substrate includes a catalyst that includes a precious metal and a solid solution comprising solid solution metals, wherein the solid solution metals include yttrium, zirconium, and titanium.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: November 18, 2008
    Assignee: Umicore AG & Co. KG
    Inventors: William J. LaBarge, Joseph V. Bonadies, Joachim Kupe
  • Patent number: 7435275
    Abstract: In one embodiment, a method of heating an exhaust treatment device can comprise: generating reformate in a reformer, wherein the reformate comprises hydrogen; introducing oxygen to the reformate prior to combining the reformate with another stream; combusting a portion of the reformate and generating an exotherm to form heated reformate; and introducing the heated reformate to the exhaust treatment device. In one embodiment the exhaust system can comprise: a reformer; a reformate conduit disposed in physical communication with a reformate outlet of the reformer; an exhaust treatment device disposed in fluid communication with the reformer; and an oxygen supply disposed in fluid communication with the reformate conduit such that oxygen can be introduced into the reformate conduit upstream of a reformate conduit outlet, wherein the reformate conduit outlet is disposed in physical communication with an exhaust conduit and/or the exhaust treatment device.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: October 14, 2008
    Assignee: Delphi Technologies, Inc.
    Inventors: Haskell Simpkins, Joseph V. Bonadies, David A. Goulette, Kenneth S. Price, John E. Kirwan
  • Patent number: 7409823
    Abstract: A method and system for introducing supplemental material to an exhaust aftertreatment device, including: a delivery system, an air pump operable to input pressurized air to the delivery system, and a turbosupercharger of an internal combustion engine operable to deliver pressurized air to an inlet of the air pump. The supplemental material introduced to the exhaust aftertreatment device is pressurized by the pressurized air input from the air pump, and the air inlet to the air pump is pressurized by the turbosupercharger for the internal combustion engine. The delivery system uses existing pressurized air generated within the engine system from the turbosupercharger to supplement air pressure supplied to the turbine-style air pump used by the delivery system. The supplemental material may comprise ammonia, hydrogen, carbon monoxide, or urea.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: August 12, 2008
    Assignee: Delphi Technologies, Inc.
    Inventors: Kenneth S. Price, Joseph V. Bonadies, John E. Kirwan, David Alexander Goulette
  • Publication number: 20080163607
    Abstract: A dual NOx trap system for reducing NOx emissions from an internal combustion engine. The system is plumbed and controlled such that the NOx adsorption time of a trap is decoupled from the NOx regeneration time. A trap is taken out of service for regeneration only for the minimum required regeneration time and then is placed back into service. Because regeneration times are short relative to adsorption times, during most of the working life of the assembly both of the traps are in service in NOx-trapping mode. Thus, higher NOx-trapping efficiencies are provided over most of the working life of the system because each unit volume of catalyst is in service for more than 50% of the time, permitting a smaller volume of catalyst for each trap than in a prior art system. Further, shorter off-line regeneration times result in reduced cooling of the traps during regeneration.
    Type: Application
    Filed: January 5, 2007
    Publication date: July 10, 2008
    Inventors: Thomas W. Silvis, Joseph V. Bonadies
  • Patent number: 7243488
    Abstract: A diesel exhaust gas system includes a diesel particulate filter (DPF), a trap for nitrogen oxides (LNT), a hydrocarbon catalytic reformer for generating reformate, and an air supply. A method for controlling the rate of burn of soot in a DPF limits the oxygen percentage in the exhaust to about 6%. The LNT may be located ahead of the DPF in the exhaust line. Reformate is directed with exhaust through the LNT. The second flow of air cools the exhaust gas and thereby prevents overheating of the DPF substrate. The DPF also may be located ahead of the LNT. Reformate is controllably combusted by the second air flow in the DPF, reducing the oxygen percentage to about 6%, thus limiting the rate at which soot in the DPF can burn and thereby preventing overheating of the DPF substrate.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: July 17, 2007
    Assignee: Delphi Technologies, Inc.
    Inventors: Joseph V. Bonadies, David A. Goulette, Mansour Masoudi, Joachim Kupe, Russell H. Bosch
  • Patent number: 7240484
    Abstract: In one embodiment, an exhaust treatment system comprises a selective catalytic reduction device, an off-line reformer disposed in selective fluid communication with and upstream of the selective catalytic reduction device, and a plasma reactor disposed downstream of and in fluid communication with the off-line reformer, and disposed upstream of and in fluid communication with the selective catalytic reduction device. The selective catalytic reduction device is capable of storing ammonia and of enabling the reaction of the ammonia with NOx. The reformer is capable of producing a reformate comprising hydrogen and nitrogen. The plasma reactor is capable of producing ammonia from the reformate, and is a thermal plasma reactor or a surface discharge non-thermal plasma reactor.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: July 10, 2007
    Assignee: Delphi Technologies, Inc.
    Inventors: Bob X. Li, Mark D. Hemingway, Joseph V. Bonadies, Joachim Kupe