Patents by Inventor Joseph W. Tringe

Joseph W. Tringe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11850790
    Abstract: The present disclosure relates to a volumetric additive manufacturing system for forming a structure from a volume of resin using microwave energy. The system makes use of an electronic controller and at least one beam forming algorithm accessible by the electronic controller for generating information relating to an amplitude and a time delay for forming a microwave signal, where the microwave signal will be used in irradiating a build volume, and where the build volume is formed by the volume of resin. A microwave signal generating subsystem is included which is responsive to the information generated by the beam forming algorithm, and which generates a microwave signal using the amplitude and the time delay determined by the beam forming algorithm. An antenna is used to receive the microwave signal and project the microwave signal as a microwave beam, in accordance with the amplitude and time delay, into the build volume to form the structure.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: December 26, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Saptarshi Mukherjee, Tammy Chang, Joseph W. Tringe
  • Publication number: 20230135458
    Abstract: The present disclosure relates to a volumetric additive manufacturing system for forming a structure from a volume of resin using microwave energy. The system makes use of an electronic controller and at least one beam forming algorithm accessible by the electronic controller for generating information relating to an amplitude and a time delay for forming a microwave signal, where the microwave signal will be used in irradiating a build volume, and where the build volume is formed by the volume of resin. A microwave signal generating subsystem is included which is responsive to the information generated by the beam forming algorithm, and which generates a microwave signal using the amplitude and the time delay determined by the beam forming algorithm. An antenna is used to receive the microwave signal and project the microwave signal as a microwave beam, in accordance with the amplitude and time delay, into the build volume to form the structure.
    Type: Application
    Filed: November 3, 2021
    Publication date: May 4, 2023
    Inventors: Saptarshi MUKHERJEE, Tammy CHANG, Joseph W. TRINGE
  • Patent number: 10309833
    Abstract: According to one embodiment, a method of forming a plasmonic condensing lens for room temperature quantum noise limited (QNL) infrared (IR) spectrometry includes: forming a silicon cone on a substrate; coating the silicon cone with a highly reflective material; and modifying the silicon cone using focused ion beam (FIB) modification to permit transmittance of light through the silicon cone.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: June 4, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Charles G. Stevens, Joseph W. Tringe, Christopher T. Cunningham
  • Publication number: 20180245982
    Abstract: According to one embodiment, a method of forming a plasmonic condensing lens for room temperature quantum noise limited (QNL) infrared (IR) spectrometry includes: forming a silicon cone on a substrate; coating the silicon cone with a highly reflective material; and modifying the silicon cone using focused ion beam (FIB) modification to permit transmittance of light through the silicon cone.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 30, 2018
    Inventors: Charles G. Stevens, Joseph W. Tringe, Christopher T. Cunningham
  • Patent number: 9970820
    Abstract: According to one embodiment, a heterodyne detection system for detecting light, includes: a first input aperture configured to receive first light from a scene input; a second input aperture configured to receive second light from a local oscillator input; a broadband local oscillator configured to provide the second light to the second input aperture; a dispersive element configured to disperse the first light and the second light; and a final condensing lens coupled to a detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the detector. The detector is configured to sense a frequency difference between the first light and the second light; and the final condensing lens comprises a plasmonic condensing lens. Methods for forming a plasmonic condensing lens to enable room temperature quantum noise limited spectrometry are also disclosed.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: May 15, 2018
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Charles G. Stevens, Joseph W. Tringe, Christopher T. Cunningham
  • Publication number: 20170211979
    Abstract: According to one embodiment, a heterodyne detection system for detecting light, includes: a first input aperture configured to receive first light from a scene input; a second input aperture configured to receive second light from a local oscillator input; a broadband local oscillator configured to provide the second light to the second input aperture; a dispersive element configured to disperse the first light and the second light; and a final condensing lens coupled to a detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the detector. The detector is configured to sense a frequency difference between the first light and the second light; and the final condensing lens comprises a plasmonic condensing lens. Methods for forming a plasmonic condensing lens to enable room temperature quantum noise limited spectrometry are also disclosed.
    Type: Application
    Filed: June 9, 2016
    Publication date: July 27, 2017
    Inventors: Charles G. Stevens, Joseph W. Tringe, Christopher T. Cunningham
  • Patent number: 9404801
    Abstract: In one embodiment, a heterodyne detection system for detecting light includes a first input aperture configured to receive first light from a scene input, a second input aperture configured to receive second light from a local oscillator input, a broadband local oscillator configured to provide the second light to the second input aperture, a dispersive element configured to disperse the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: August 2, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Charles G. Stevens, Joseph W. Tringe, Christopher T. Cunningham
  • Publication number: 20150079299
    Abstract: A method for coating target surfaces by spraying an atomized liquid formulation of a volatile solvent, a dispersant, and adhesion promoter, a polymer, a plasticizer and particulates of an active material and vaporizing the solvent from the spray droplets to form deformable solid particles in flight that impact the target surface to form a coating. The temperature of the atomizing gas used to form the spray and the liquid formulation temperatures can be manipulated to accelerate or decelerate the evaporation of solvent and balance the heat of vaporization of the solvent in the spray liquid so that condensation of ambient vapors in the atmosphere surrounding the deposition target is prevented.
    Type: Application
    Filed: September 19, 2014
    Publication date: March 19, 2015
    Applicants: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Herbert B. Scher, Durham K. Giles, Joseph W. Tringe, Harold W. Levie
  • Patent number: 8901495
    Abstract: In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving a first light from a scene input, a second input aperture adapted for receiving a second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the detector, and the detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are disclosed according to more embodiments.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: December 2, 2014
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Charles G. Stevens, Joseph W. Tringe
  • Publication number: 20140326884
    Abstract: In one embodiment, a heterodyne detection system for detecting light includes a first input aperture configured to receive first light from a scene input, a second input aperture configured to receive second light from a local oscillator input, a broadband local oscillator configured to provide the second light to the second input aperture, a dispersive element configured to disperse the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
    Type: Application
    Filed: July 14, 2014
    Publication date: November 6, 2014
    Inventors: Charles G. Stevens, Joseph W. Tringe, Christopher T. Cunningham
  • Patent number: 8816284
    Abstract: In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving first light from a scene input, a second input aperture adapted for receiving second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: August 26, 2014
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Charles G. Stevens, Joseph W. Tringe, Christopher Thomas Cunningham
  • Publication number: 20130306549
    Abstract: A nano porous membrane having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter of the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.
    Type: Application
    Filed: July 23, 2013
    Publication date: November 21, 2013
    Inventors: Joseph W. Tringe, Rodney L. Balhorn, Saleem Zaidi
  • Patent number: 8584506
    Abstract: A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: November 19, 2013
    Assignee: lawrence Livermore National Security, LLC.
    Inventors: James V. Candy, David S. Clague, Christopher L. Lee, Robert E. Rudd, Alan K. Burnham, Joseph W. Tringe
  • Patent number: 8512588
    Abstract: A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter of the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: August 20, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Joseph W. Tringe, Rodney L. Balhorn, Saleem Zaidi
  • Publication number: 20120037591
    Abstract: A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter of the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.
    Type: Application
    Filed: August 13, 2010
    Publication date: February 16, 2012
    Inventors: Joseph W. Tringe, Rodney L. Balhorn, Saleem Zaidi
  • Patent number: 8093474
    Abstract: A nanostructure includes a nanowire having metallic spheres formed therein, the spheres being characterized as having at least one of about a uniform diameter and about a uniform spacing there between. A nanostructure in another embodiment includes a substrate having an area with a nanofeature; and a nanowire extending from the nanofeature, the nanowire having metallic spheres formed therein, the spheres being characterized as having at least one of about a uniform diameter and about a uniform spacing there between. A method for forming a nanostructure is also presented. A method for reading and writing data is also presented. A method for preparing nanoparticles is also presented.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: January 10, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Saleem Zaidi, Joseph W. Tringe, Ganesh Vanamu, Rajiv Prinja
  • Publication number: 20110240861
    Abstract: In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving first light from a scene input, a second input aperture adapted for receiving second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 6, 2011
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Charles G. Stevens, Joseph W. Tringe, Christopher Thomas Cunningham
  • Publication number: 20110242527
    Abstract: In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving a first light from a scene input, a second input aperture adapted for receiving a second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the detector, and the detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are disclosed according to more embodiments.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 6, 2011
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Charles G. Stevens, Joseph W. Tringe
  • Patent number: 7687746
    Abstract: A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: March 30, 2010
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Joseph W. Tringe, Alexander E. Gash, Troy W. Barbee, Jr.
  • Publication number: 20080230763
    Abstract: A nanostructure includes a nanowire having metallic spheres formed therein, the spheres being characterized as having at least one of about a uniform diameter and about a uniform spacing there between. A nanostructure in another embodiment includes a substrate having an area with a nanofeature; and a nanowire extending from the nanofeature, the nanowire having metallic spheres formed therein, the spheres being characterized as having at least one of about a uniform diameter and about a uniform spacing there between. A method for forming a nanostructure is also presented. A method for reading and writing data is also presented. A method for preparing nanoparticles is also presented.
    Type: Application
    Filed: March 19, 2008
    Publication date: September 25, 2008
    Inventors: Saleem Zaidi, Joseph W. Tringe, Ganesh Vanamu, Rajiv Prinja