Patents by Inventor JOSEPHINE F. ESQUIVEL-UPSHAW

JOSEPHINE F. ESQUIVEL-UPSHAW has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240041575
    Abstract: Disclosed herein is a method for forming an anti-microbial layer on an apparatus. Also disclosed is a method for improving the anti-bacterial properties of a titanium device coated with titanium-nitride (TiN). Also disclosed is a medical apparatus comprising an anti-microbial layer prepared by the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 8, 2024
    Inventors: Josephine F. Esquivel-Upshaw, Fan Ren, Patrick Carey, Arthur E. Clark, JR., Christopher D. Batich
  • Patent number: 11864964
    Abstract: Disclosed herein is a method for forming an anti-microbial layer on an apparatus. Also disclosed is a method for improving the anti-bacterial properties of a titanium device coated with titanium-nitride (TiN). Also disclosed is a medical apparatus comprising an anti-microbial layer prepared by the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: January 9, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Josephine F. Esquivel-Upshaw, Fan Ren, Patrick Carey, Arthur E. Clark, Jr., Christopher D. Batich
  • Patent number: 11752236
    Abstract: In one aspect, the disclosure relates to protective, anti-bacterial coatings for medical implants and methods of making the same. Also disclosed herein are methods for improving the anti-bacterial properties of a medical device coated with silicon carbide (SiC) or titanium nitride (TiN). Further disclosed herein are medical devices including an anti-microbial layer prepared by the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: September 12, 2023
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Josephine F. Esquivel-Upshaw, Arthur E. Clark, Fan Ren, Samira Afonso Camargo
  • Publication number: 20230066453
    Abstract: In one aspect, the disclosure relates to protective, anti-bacterial coatings for medical implants and methods of making the same. Also disclosed herein are methods for improving the anti-bacterial properties of a medical device coated with silicon carbide (SiC) or titanium nitride (TiN). Further disclosed herein are medical devices including an anti-microbial layer prepared by the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Application
    Filed: January 4, 2021
    Publication date: March 2, 2023
    Inventors: Josephine F. Esquivel-Upshaw, Arthur E. Clark, Fan Ren, Samira Afonso Camargo
  • Publication number: 20210228323
    Abstract: Disclosed herein is a method for forming an anti-microbial layer on an apparatus. Also disclosed is a method for improving the anti-bacterial properties of a titanium device coated with titanium-nitride (TiN). Also disclosed is a medical apparatus comprising an anti-microbial layer prepared by the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Application
    Filed: July 31, 2019
    Publication date: July 29, 2021
    Inventors: Josephine F. Esquivel-Upshaw, Fan Ren, Patrick Carey, Arthur E. Clark, Jr., Christopher D. Batich
  • Publication number: 20210003528
    Abstract: Various examples are provided for disposable medical sensors that can be used for detection of SARS-CoV-2 antigen, cardiac troponin I, or other biosensing applications. In one example, a medical sensing system includes single-use disposable test strip comprising a functionalized sensing area configured to detect SARS-CoV-2 antigen and a portable sensing and readout device including pulse generation circuitry that can generate synchronized gate and drain pulses for detection and quantification of SARS-CoV-2 antigen in biological samples. In another example, a method includes providing a saliva sample to a functionalized sensing area configured to detect SARS-CoV-2 antigen, generating synchronized gate and drain pulses for a transistor, the gate pulse provided via electrodes of the functionalized sensing area, and sensing an output of the transistor that is a function of a concentration of SARS-CoV-2 antigen in the sample.
    Type: Application
    Filed: September 18, 2020
    Publication date: January 7, 2021
    Inventors: Josephine F. Esquivel-Upshaw, Fan Ren, Stephen J. Pearton, Steven Craig Ghivizzani, Samira Afonso Camargo, Chaker Fares, Minghan Xian, Patrick H. Carey, Jenshan Lin, Siang-Sin Shan, Yu-Te Liao, Shao-Yung Lu
  • Patent number: 10813847
    Abstract: Dental prosthetic restoration coatings made of dielectric materials, methods of fabricating the same, as well as methods of testing dental prosthetic restorations are provided. A prosthetic restoration coating can include dielectric materials such as Al2O3, ZrO2, SiNx, SiC, and SiO2. Application can take place using plasma enhanced chemical vapor deposition (PECVD) methods, and alternating materials can be used to achieve desired anticorrosive, structural integrity, hardness, adhesion, and color characteristics. A testing method can include immersing a test device in solutions of differing pH, with or without abrasive steps. The cycling can include an acidic solution and a basic solution, with an optional neutral solution. As the abrasive step, a chewing simulator can be utilized.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: October 27, 2020
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Josephine F. Esquivel-Upshaw, Fan Ren, Arthur E. Clark
  • Publication number: 20180325780
    Abstract: Dental prosthetic restoration coatings made of dielectric materials, methods of fabricating the same, as well as methods of testing dental prosthetic restorations are provided. A prosthetic restoration coating can include dielectric materials such as Al2O3, ZrO2, SiNx, SiC, and SiO2. Application can take place using plasma enhanced chemical vapor deposition (PECVD) methods, and alternating materials can be used to achieve desired anticorrosive, structural integrity, hardness, adhesion, and color characteristics. A testing method can include immersing a test device in solutions of differing pH, with or without abrasive steps. The cycling can include an acidic solution and a basic solution, with an optional neutral solution. As the abrasive step, a chewing simulator can be utilized.
    Type: Application
    Filed: October 28, 2016
    Publication date: November 15, 2018
    Inventors: JOSEPHINE F. ESQUIVEL-UPSHAW, FAN REN, ARTHUR E. CLARK