Patents by Inventor Joshua D. Caldwell

Joshua D. Caldwell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9196703
    Abstract: A method for fabricating a semiconductor device, such as a GaN high electron mobility transistor (HEMT) device, including etching a thermal via into a back-side of a semiconductor substrate and depositing a diamond nucleation seed layer across the back-side of the substrate. The method further includes coating the diamond nucleation with a mask layer and removing mask material outside of the thermal via on the planar portions of the back-side of the substrate. The method includes removing portions of the diamond nucleation layer on the planar portions and then removing the remaining portion of the mask material in the thermal via. The method then includes depositing a bulk diamond layer within the thermal via on the remaining portion of the diamond nucleation layer so that diamond only grows in the thermal via and not on the planar portions of the substrate.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: November 24, 2015
    Assignees: Northrop Grumman Systems Corporation, The United States of America, as Represented by the Secretary of the Navy, The Regents of the University of California
    Inventors: Karl D. Hobart, Tatyana I. Feygelson, Eugene I. Imhoff, Travis J. Anderson, Joshua D. Caldwell, Andrew D. Koehler, Bradford B. Pate, Marko J. Tadjer, Rajinder S. Sandhu, Vincent Gambin, Gregory Lewis, Ioulia Smorchkova, Mark Goorsky, Jeff McKay
  • Publication number: 20150063739
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Application
    Filed: October 24, 2014
    Publication date: March 5, 2015
    Applicant: Naval Research Laboratory
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Publication number: 20150056763
    Abstract: A method for fabricating a semiconductor device, such as a GaN high electron mobility transistor (HEMT) device, including etching a thermal via into a back-side of a semiconductor substrate and depositing a diamond nucleation seed layer across the back-side of the substrate. The method further includes coating the diamond nucleation with a mask layer and removing mask material outside of the thermal via on the planar portions of the back-side of the substrate. The method includes removing portions of the diamond nucleation layer on the planar portions and then removing the remaining portion of the mask material in the thermal via. The method then includes depositing a bulk diamond layer within the thermal via on the remaining portion of the diamond nucleation layer so that diamond only grows in the thermal via and not on the planar portions of the substrate.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 26, 2015
    Inventors: Karl D. Hobart, Tatyana I. Feygelson, Eugene A. Imhoff, Travis J. Anderson, Joshua D. Caldwell, Andrew D. Koehler, Bradford B. Pate, Marko J. Tadjer, Randijer S. Sandhu, Vincent Gambin, Gregory Lewis, Ioulia Smorchkova, Mark Goorsky, Jeff McKay
  • Publication number: 20140294338
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Publication number: 20140224989
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 14, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Patent number: 8753468
    Abstract: A method for reducing graphene film thickness on a donor substrate and transferring graphene films from a donor substrate to a handle substrate includes applying a bonding material to the graphene on the donor substrate, releasing the bonding material from the donor substrate thereby leaving graphene on the bonding material, applying the bonding material with graphene onto the handle substrate, and releasing the bonding material from the handle substrate thereby leaving the graphene on the handle substrate. The donor substrate may comprise SiC, metal foil or other graphene growth substrate, and the handle substrate may comprise a semiconductor or insulator crystal, semiconductor device, epitaxial layer, flexible substrate, metal film, or organic device.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: June 17, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Joshua D. Caldwell, Karl D. Hobart, Travis Anderson, Francis J. Kub
  • Publication number: 20130252016
    Abstract: A metamaterial thin film with plasmonic properties formed by depositing metallic films by atomic layer deposition onto a substrate to form a naturally occurring mosaic-like nanostructure having two-dimensional features with air gaps between the two-dimensional features. Due to the unique deposition nanostructure, plasmonic thin films of metal or highly conducting materials can be produced on any substrate, including fabrics and biological materials. In addition, these plasmonic materials can be used in conjunction with geometric patterns that may be used to create multiple resonance plasmonic metamaterials.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 26, 2013
    Inventors: Orest J. Glembocki, Sharka M. Prokes, Joshua D. Caldwell, Mikko Ritala, Markku Leskela, Jaakko Niinisto, Eero Santala, Timo Hatanpaa, Maarit Kariemi
  • Patent number: 8445383
    Abstract: A heterojunction between thin films of NCD and 4H—SiC was developed. Undoped and B-doped NCDs were deposited on both n? and p? SiC epilayers. I-V measurements on p+ NCD/n? SiC indicated Schottky rectifying behavior with a turn-on voltage of around 0.2 V. The current increased over eight orders of magnitude with an ideality factor of 1.17 at 30° C. Ideal energy-band diagrams suggested a possible conduction mechanism for electron transport from the SiC conduction band to either the valence band or acceptor level of the NCD film.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: May 21, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Karl D. Hobart, Tatyana I Feygelson, Marko J Tadjer, Joshua D. Caldwell, Kendrick X Liu, Francis J. Kub, Michael A Mastro, James E Butler
  • Publication number: 20120273662
    Abstract: A plasmonic grating sensor having periodic arrays of vertically aligned plasmonic nanopillars, nanowires, or both with an interparticle pitch ranging from ?/8?2?, where ? is the incident wavelength of light divided by the effective index of refraction of the sample; a coupled-plasmonic array sensor having vertically aligned periodic arrays of plasmonically coupled nanopillars, nanowires, or both with interparticle gaps sufficient to induce overlap between the plasmonic evanescent fields from neighboring nanoparticles, typically requiring edge-to-edge separations of less than 20 nm; and a plasmo-photonic array sensor having a double-resonant, periodic array of vertically aligned subarrays of 1 to 25 plasmonically coupled nanopillars, nanowires, or both where the subarrays are periodically spaced at a pitch on the order of a wavelength of light.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 1, 2012
    Inventors: Joshua D. Caldwell, Orest J. Glembocki, Sharka M. Prokes, Ronald W. Rendell
  • Patent number: 7915143
    Abstract: A method of reversing Shockley stacking fault expansion includes providing a bipolar or a unipolar SiC device exhibiting forward voltage drift caused by Shockley stacking fault nucleation and expansion. The SiC device is heated to a temperature above 150° C. A current is passed via forward bias operation through the SiC device sufficient to induce at least a partial recovery of the forward bias drift.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: March 29, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Joshua D. Caldwell, Robert E Stahlbush, Karl D Hobart, Marko J Tadjer, Orest J Glembocki
  • Publication number: 20110048625
    Abstract: A method for reducing graphene film thickness on a donor substrate and transferring graphene films from a donor substrate to a handle substrate includes applying a bonding material to the graphene on the donor substrate, releasing the bonding material from the donor substrate thereby leaving graphene on the bonding material, applying the bonding material with graphene onto the handle substrate, and releasing the bonding material from the handle substrate thereby leaving the graphene on the handle substrate. The donor substrate may comprise SiC, metal foil or other graphene growth substrate, and the handle substrate may comprise a semiconductor or insulator crystal, semiconductor device, epitaxial layer, flexible substrate, metal film, or organic device.
    Type: Application
    Filed: August 12, 2010
    Publication date: March 3, 2011
    Inventors: Joshua D. Caldwell, Karl D. Hobart, Travis Anderson, Francis J. Kub
  • Publication number: 20090273390
    Abstract: A method of reversing Shockley stacking fault expansion includes providing a bipolar or a unipolar SiC device exhibiting forward voltage drift caused by Shockley stacking fault nucleation and expansion. The SiC device is heated to a temperature above 150° C. A current is passed via forward bias operation through the SiC device sufficient to induce at least a partial recovery of the forward bias drift.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 5, 2009
    Inventors: JOSHUA D. CALDWELL, Robert E. Stahlbush, Karl D. Hobart, Marko J. Tadjer, Orest J. Glembocki
  • Publication number: 20090090918
    Abstract: A heterojunction between thin films of NCD and 4H—SiC was developed. Undoped and B-doped NCDs were deposited on both n? and p? SiC epilayers. I-V measurements on p+ NCD/n? SiC indicated Schottky rectifying behavior with a turn-on voltage of around 0.2 V. The current increased over eight orders of magnitude with an ideality factor of 1.17 at 30° C. Ideal energy-band diagrams suggested a possible conduction mechanism for electron transport from the SiC conduction band to either the valence band or acceptor level of the NCD film.
    Type: Application
    Filed: September 5, 2008
    Publication date: April 9, 2009
    Inventors: Karl D. Hobart, Tatyana I. Feygelson, Marko J. Tadjer, Joshua D. Caldwell, Kendrick X. Liu, Francis J. Kub