Patents by Inventor Joshua Gomes

Joshua Gomes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10913924
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: February 9, 2021
    Assignee: Emulate, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Patent number: 10913063
    Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: February 9, 2021
    Assignee: Emulate, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
  • Publication number: 20200392438
    Abstract: Devices, methods and systems are described for providing controlled amounts of gas, gas pressure and vacuum to microfluidic devices the culturing of cells under flow conditions.
    Type: Application
    Filed: August 3, 2020
    Publication date: December 17, 2020
    Inventors: Rowe Lewis, Craig Henshaw, Joshua Gomes, Guy Robert Thompson II, David James Coon, Christopher David Hinojosa
  • Publication number: 20200198716
    Abstract: An article carrier for bicycles can include a bag that can have first and said opposing walls. The article carrier can further include at least two coupling elements that can be mechanically coupled to the first wall and at least two coupling elements that can be mechanically coupled to the second wall. Each of the coupling elements mechanically coupled to the first wall can each be configured removably couple to at least one coupling element mechanically coupled to the first wall. The article carrier can also include a pouch coupled to the bag. The pouch can be configured to store at least the bag, the at least two coupling elements coupled to the first wall, and the at least two coupling elements coupled to the second wall.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 25, 2020
    Applicant: Anchor Product Design dba Parallel
    Inventor: Joshua Gomes
  • Publication number: 20200190455
    Abstract: A perfusion manifold assembly is described that allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate. A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body.
    Type: Application
    Filed: December 30, 2019
    Publication date: June 18, 2020
    Inventors: Christopher David Hinojosa, Guy Robert Thompson, Joshua Gomes, Jacob Freake, Doug Sabin
  • Patent number: 10661275
    Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: May 26, 2020
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
  • Patent number: 10519410
    Abstract: A perfusion manifold assembly is described that allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate. A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: December 31, 2019
    Assignee: Emulate, Inc
    Inventors: Christopher David Hinojosa, Guy Robert Thompson, II, Joshua Gomes, Jacob Freake, Doug Sabin
  • Patent number: 10473619
    Abstract: The disclosure provides cassettes, electrophoresis systems, methods for making the device, and methods of fractionating a sample using the cassettes and electrophoresis systems described herein.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: November 12, 2019
    Assignee: SAGE SCIENCE, INC.
    Inventors: Douglas Grosvenor Sabin, Joshua Gomes, Todd J. Barbera, Charles Sidoti, Simranjit Singh, T. Christian Boles
  • Patent number: 10335788
    Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: July 2, 2019
    Assignee: Emulate, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
  • Publication number: 20190169557
    Abstract: A perfusion manifold assembly is described that allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate. Drop-to-drop connection schemes are described for putting a microfluidic device in fluidic communication with a fluid source or another microfluidic device, including but not limited to, putting a microfluidic device in fluidic communication with the perfusion manifold assembly.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 6, 2019
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Guy Robert Thompson, II, Petrus Wilhelmus Martinus van Ruijven, Matthew Daniel Solomon, Christian Alexander Potzner, Patrick Sean Tuohy, Joshua Gomes, Norman Wen, Jacob Freake, Doug Sabin
  • Patent number: 10273441
    Abstract: The invention relates to a perfusion manifold assembly that allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with an assembly so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate. The invention further relates to a drop-to-drop connection scheme for putting a microfluidic device in fluidic communication with a fluid source or another microfluidic device, including but not limited to, putting a microfluidic device in fluidic communication with the perfusion manifold assembly.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: April 30, 2019
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Guy Robert Thompson, II, Petrus Wilhelmus Martinus van Ruijven, Matthew Daniel Solomon, Christian Alexander Potzner, Patrick Sean Tuohy, Joshua Gomes, Norman Wen, Jacob Freake, Doug Sabin
  • Publication number: 20190112566
    Abstract: A perfusion manifold assembly is described that allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate. A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body.
    Type: Application
    Filed: December 17, 2018
    Publication date: April 18, 2019
    Inventors: Christopher David Hinojosa, Guy Robert Thompson, II, Joshua Gomes, Jacob Freake, Doug Sabin
  • Patent number: 10233416
    Abstract: A perfusion manifold assembly is described that allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate. A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: March 19, 2019
    Assignee: EMULATE, INC.
    Inventors: Christopher David Hinojosa, Guy Robert Thompson, II, Joshua Gomes, Jacob Freake, Doug Sabin
  • Publication number: 20190040349
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 7, 2019
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Publication number: 20190040348
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 7, 2019
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Patent number: 10184102
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 22, 2019
    Assignee: Emulate, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Publication number: 20180016536
    Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
  • Publication number: 20180015465
    Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
  • Patent number: D860471
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: September 17, 2019
    Assignee: EMULATE, Inc.
    Inventors: Christopher Hinojosa, Joshua Gomes
  • Patent number: D888983
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: June 30, 2020
    Assignee: EMULATE, Inc.
    Inventors: Christopher David Hinojosa, Joshua Gomes