Patents by Inventor Josiah E. Verkaik

Josiah E. Verkaik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10835652
    Abstract: A magnetically-levitated blood pump with an optimization method that enables miniaturization and supercritical operation. The blood pump includes an optimized annular blood gap that increases blood flow and also provides a reduction in bearing stiffness among the permanent magnet bearings. Sensors are configured and placed optimally to provide space savings for the motor and magnet sections of the blood pump. Rotor mass is increased by providing permanent magnet placement deep within the rotor enabled by a draw rod configuration.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: November 17, 2020
    Assignee: Worldheart Corporation
    Inventors: Michael R. Ricci, James F. Antaki, Josiah E. Verkaik, David B. Paden, Shaun T. Snyder, Bradley E. Paden, Jingchun Wu
  • Publication number: 20160184499
    Abstract: A magnetically-levitated blood pump with an optimization method that enables miniaturization and supercritical operation. The blood pump includes an optimized annular blood gap that increases blood flow and also provides a reduction in bearing stiffness among the permanent magnet bearings. Sensors are configured and placed optimally to provide space savings for the motor and magnet sections of the blood pump. Rotor mass is increased by providing permanent magnet placement deep within the rotor enabled by a draw rod configuration.
    Type: Application
    Filed: March 9, 2016
    Publication date: June 30, 2016
    Applicants: Worldheart Corporation, Carnegie Mellon University
    Inventors: Michael R. Ricci, James F. Antaki, Josiah E. Verkaik, David B. Paden, Shaun T. Snyder, Bradley E. Paden, Jingchun WU
  • Patent number: 9314557
    Abstract: A magnetically-levitated blood pump with an optimization method that enables miniaturization and supercritical operation. The blood pump includes an optimized annular blood gap that increases blood flow and also provides a reduction in bearing stiffness among the permanent magnet bearings. Sensors are configured and placed optimally to provide space savings for the motor and magnet sections of the blood pump. Rotor mass is increased by providing permanent magnet placement deep within the rotor enabled by a draw rod configuration.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: April 19, 2016
    Assignees: Worldheart Corporation, Carnegie Mellon University
    Inventors: Michael R. Ricci, James F. Antaki, Josiah E. Verkaik, David B. Paden, Shaun T. Snyder, Bradley E. Paden, Jingchun Wu
  • Patent number: 8678830
    Abstract: A circulatory heart model (30) is disclosed that is geometrically accurate with respect to corresponding anatomical structures (31, 91, 103, 112, 124). The model (30) provides a closed loop for providing flow through the major anatomical structures (31, 91, 103, 112, 124) corresponding to a modeled biological heart. The model (30) provides a means of pumping fluid through a closed loop flow circuit analogous to the circulatory system by gripping the base of the heart model (30) and squeezing with one's hand. The transparent quality of the heart model (30) enables flow visualization including visualization of anatomical valve function through representative valves (53, 60, 69, 80). The model (3) provides high educational, scientific, and/or amusement value in a device that is economical to produce.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: March 25, 2014
    Inventors: Jonathan M. Gurdin, Josiah E. Verkaik
  • Publication number: 20120288840
    Abstract: A circulatory heart model (30) is disclosed that is geometrically accurate with respect to corresponding anatomical structures (31, 91, 103, 112, 124). The model (30) provides a closed loop for providing flow through the major anatomical structures (31, 91, 103, 112, 124) corresponding to a modeled biological heart. The model (30) provides a means of pumping fluid through a closed loop flow circuit analogous to the circulatory system by gripping the base of the heart model (30) and squeezing with one's hand. The transparent quality of the heart model (30) enables flow visualization including visualization of anatomical valve function through representative valves (53, 60, 69, 80). The model (3) provides high educational, scientific, and/or amusement value in a device that is economical to produce.
    Type: Application
    Filed: January 28, 2011
    Publication date: November 15, 2012
    Inventors: Jonathan M. Gurdin, Josiah E. Verkaik
  • Publication number: 20120143141
    Abstract: Cannula assemblies and related methods are provided. In accordance with one embodiment, a cannula assembly includes a tubular structure coupled with a flange assembly. The flange assembly includes a plurality of wireform loops disposed in a circumferential, woven pattern about an end of the tubular structure. The flange assembly is configured to exhibit a first, collapsed state wherein the plurality of wireform loops extend substantially axially from the tubular structure, and a second, expanded state wherein the plurality of wireform loops extend in a direction having a substantial radial component relative to the tubular structure. In another embodiment, a cannula assembly includes a conformal flange coupled with a tubular structure, wherein the tubular structure extends both distally and proximally of the flange.
    Type: Application
    Filed: August 3, 2011
    Publication date: June 7, 2012
    Inventors: Josiah E. Verkaik, James F. Antaki, John Alexander Martin
  • Publication number: 20110237863
    Abstract: A magnetically-levitated blood pump with an optimization method that enables miniaturization and supercritical operation. The blood pump includes an optimized annular blood gap that increases blood flow and also provides a reduction in bearing stiffness among the permanent magnet bearings. Sensors are configured and placed optimally to provide space savings for the motor and magnet sections of the blood pump. Rotor mass is increased by providing permanent magnet placement deep within the rotor enabled by a draw rod configuration.
    Type: Application
    Filed: September 24, 2009
    Publication date: September 29, 2011
    Applicant: WORLDHEART, INC.
    Inventors: Michael R. Ricci, James F. Antaki, Josiah E. Verkaik, David B. Paden, Shaun T. Snyder, Bradley E. Paden
  • Publication number: 20110084474
    Abstract: A magnetic coupling having two or more elements for providing a conduit. The coupling provides high retention of conduit elements with minimum size magnetic components, while also providing for intentional detachment of the magnetically coupled elements. The coupling is configured to facilitate detachment with applied loads that are substantially less than operational retention force (i.e., breakaway force) of the magnetically coupled elements. The magnetic coupling device includes a connecting male element and a female element and at least one internal conduit integral to at least one of the connecting male and female elements. Magnetic attraction is accomplished via a magnetic circuit where the magnetic circuit includes ferromagnetic material and at least one permanent magnet.
    Type: Application
    Filed: June 24, 2009
    Publication date: April 14, 2011
    Inventors: David B. Paden, Josiah E. Verkaik
  • Publication number: 20110009028
    Abstract: An amusement device concerned generally with a construction type educational toy. The amusement device provides unique functionality via board design and piece structure allowing relative motion between coupled playing pieces. The construction apparatus is of the type having rotary path-forming pieces that can be located in numerous positions on the base board. The pieces are removably interfitting and allow the construction of variable paths and patterns. The amusement device incorporates magnetism to perform relative rotary motion. A circular pattern of permanent magnets are included in construction pieces to allow numerous magnetically coupled rotary pieces to undergo relative rotation analogous to a gear train. In addition to toy or game amusement device, the present invention also embodies an education and demonstration device whereby the assembly of magnetically coupled rotary pieces provides the interactive demonstration of a gear train machine mechanism.
    Type: Application
    Filed: March 4, 2009
    Publication date: January 13, 2011
    Inventors: Jonathan M. Gurdin, Josiah E. Verkaik, Bradley E. Paden
  • Publication number: 20100217081
    Abstract: An endoscope is described in which the diameter of the image relay assembly is less than that of the objective lens assembly. An endoscope sheath is also described for sheathing the endoscope and housing or directing optical fibers for use in illuminating the endoscope view of view. An endoscope-sheath system is further described comprising the combination of the endoscope and the endoscope sheath in eccentric alignment to reduce fluid flow impedance between the two.
    Type: Application
    Filed: March 18, 2010
    Publication date: August 26, 2010
    Applicant: Linvatec Corporation
    Inventors: Thomas R. Deppmeier, Craig J. Speier, Josiah E. Verkaik, Robert R. Walls
  • Patent number: 7708689
    Abstract: An endoscope is described in which the diameter of the image relay assembly is less than that of the objective lens assembly. An endoscope sheath is also described for sheathing the endoscope and housing or directing optical fibers for use in illuminating the endoscope view of view. An endoscope-sheath system is further described comprising the combination of the endoscope and the endoscope sheath in eccentric alignment to reduce fluid flow impedance between the two.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: May 4, 2010
    Assignee: Linvatec Corporation
    Inventors: Thomas R. Deppmeier, Craig J. Speier, Josiah E. Verkaik, Robert R. Walls
  • Publication number: 20090099442
    Abstract: A telemetry method and apparatus using pressure sensing elements remotely located from associated pick-up, and processing units for the sensing and monitoring of pressure within an environment. This includes remote pressure sensing apparatus incorporating a magnetically-driven resonator being hermetically-sealed within an encapsulating shell or diaphragm and associated new method of sensing pressure. The resonant structure of the magnetically-driven resonator is suitable for measuring quantities convertible to changes in mechanical stress or mass. The resonant structure can be integrated into pressure sensors, adsorbed mass sensors, strain sensors, and the like. The apparatus and method provide information by utilizing, or listening for, the residence frequency of the oscillating resonator. The resonant structure listening frequencies of greatest interest are those at the mechanical structure's fundamental or harmonic resonant frequency.
    Type: Application
    Filed: March 26, 2007
    Publication date: April 16, 2009
    Applicant: LAUNCHPOINT TECHNOLOGIES, INC.
    Inventors: Bradley E. Paden, Brian Norling, Josiah E. Verkaik
  • Patent number: 7160247
    Abstract: An endoscope is described in which the diameter of the image relay assembly is less than that of the objective lens assembly. An endoscope sheath is also described for sheathing the endoscope and housing or directing optical fibers for use in illuminating the endoscope view of view. An endoscope-sheath system is further described comprising the combination of the endoscope and the endoscope sheath.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: January 9, 2007
    Assignee: Linvatec Corporation
    Inventors: Thomas R. Deppmeier, Craig J. Speier, Josiah E. Verkaik, Robert R. Walls