Patents by Inventor Jossian Oppenheimer

Jossian Oppenheimer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11390587
    Abstract: Improved methods for preparing chemical precursors to sulfonyl chloride III, which are important intermediates in the preparation of pyroxsulam herbicide are provided. Specifically, these precursors are compounds of Formulas VII and/or VIII, and IX, wherein R is a C1-C6 alkyl, R1 is a C1-C6 alkyl, X is Cl or OH, Y is halogen, OH, or OR2, and R2 is a C1-C6 alkyl.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: July 19, 2022
    Assignee: Corteva Agriscience LLC
    Inventors: Jossian Oppenheimer, Matthias S. Ober, Mark E. Ondari, Michael Gullo, Jayachandran Devaraj, Amaruka Hazari, Will Kruper
  • Publication number: 20220041554
    Abstract: Improved methods for preparing chemical precursors to sulfonyl chloride III, which are important intermediates in the preparation of pyroxsulam herbicide are provided. Specifically, these precursors are compounds of Formulas VII and/or VIII, and IX, wherein R is a C1-C6 alkyl, R1 is a C1-C6 alkyl, X is Cl or OH, Y is halogen, OH, or OR2, and R2 is a C1-C6 alkyl.
    Type: Application
    Filed: December 20, 2019
    Publication date: February 10, 2022
    Applicant: Corteva Agriscience LLC
    Inventors: Jossian Oppenheimer, Matthias S. Ober, Mark E. Ondari, Michael Gullo, Jayachandran Devaraj, Amaruka Hazari, Will Kruper
  • Publication number: 20220024873
    Abstract: Improved methods for preparing chemical precursors to sulfonyl chloride III, which are important intermediates in the preparation of pyroxsulam herbicide, are provided. Also provided are compounds of Formula III, Formula VII, and IV, wherein R1 is a C1-C6 alkyl, X is Cl or OH, Y is halogen, OH, or OR2, and R2 is a C1-C6 alkyl.
    Type: Application
    Filed: December 20, 2019
    Publication date: January 27, 2022
    Applicant: Geneva Agriscience LLC
    Inventors: Jossian Oppenheimer, Matthias S. Ober, Mark E. Ondari
  • Publication number: 20210198262
    Abstract: The present disclosure concerns a method for preparing florasulam which involves treating a solution of 2,6-difluoroaniline in 1,2-propylene glycol with: a) sulfonyl chloride III and then b) a base to provide, after workup and isolation, florasulam (I) in yields of about 65-85%. The treatment of 2,6-difluoroaniline with sulfonyl chloride III and the base are conducted by controlled additions.
    Type: Application
    Filed: October 10, 2018
    Publication date: July 1, 2021
    Applicant: Dow AgroSciences LLC
    Inventors: Jossian Oppenheimer, Michael Gullo, David E. Podhorez, Justin A. Alberts
  • Patent number: 10570114
    Abstract: Improved methods of synthesizing 6-aryl-4-aminopicolinates, such as arylalkyl and alkyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylates and arylalkyl and alkyl 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylates, are described herein. The improved methods include a direct Suzuki coupling step, which eliminates the protection/de-protection steps in the current chemical process, and therefore eliminates or reduces various raw materials, equipment and cycle time as well as modification of other process conditions including use of crude AP, use of ABA-diMe, and varying pH, catalyst concentration, solvent composition, and/or workup procedures. This includes synthesis of 2-aryl-6-aminopyrimidine-4-carboxylates.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: February 25, 2020
    Assignee: Dow AgroSciences LLC
    Inventors: Jason S. Fisk, Xiaoyong Li, Mark Muehlfeld, Robert S. Bauman, Jossian Oppenheimer, Siyu Tu, Mark A. Nitz, Reetam Chakrabarti, Shawn D. Feist, James W. Ringer, Ronald B. Leng
  • Patent number: 10544121
    Abstract: Improved methods of synthesizing 6-aryl-4-aminopicolinates, such as arylalkyl and alkyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylates and arylalkyl and alkyl 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylates, are described herein. The improved methods include a direct Suzuki coupling step, which eliminates the protection/de-protection steps in the current chemical process, and therefore eliminates or reduces various raw materials, equipment and cycle time as well as modification of other process conditions including use of crude AP, use of ABA-diMe, and varying pH, catalyst concentration, solvent composition, and/or workup procedures. This includes synthesis of 2-aryl-6-aminopyrimidine-4-carboxylates.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: January 28, 2020
    Assignee: Dow AgroSciences LLC
    Inventors: Jason S. Fisk, Xiaoyong Li, Mark Muehlfeld, Robert S. Bauman, Jossian Oppenheimer, Siyu Tu, Mark A. Nitz, Reetam Chakrabarti, Shawn D. Feist, James W. Ringer, Ronald B. Leng
  • Publication number: 20190106428
    Abstract: The present disclosure concerns a method for preparing florasulam which involves treating a solution of 2,6-difluoroaniline in 1,2-propylene glycol with: a) sulfonyl chloride III and then b) a base to provide, after workup and isolation, florasulam (I) in yields of about 65-85%. The treatment of 2,6-difluoroaniline with sulfonyl chloride III and the base are conducted by controlled additions.
    Type: Application
    Filed: October 10, 2018
    Publication date: April 11, 2019
    Applicant: Dow AgroSciences LLC
    Inventors: Jossian Oppenheimer, Michael Gullo, David E. Podhorez, Justin A. Alberts
  • Publication number: 20190062350
    Abstract: Methods for the selective borylation of arenes, including arenes substituted with an electron-withdrawing group (e.g., 1-chloro-3-fluoro-2-substituted benzenes) are provided. The methods can be used, in some embodiments, to efficiently and regioselectively prepare borylated arenes without the need for expensive cryogenic reaction conditions.
    Type: Application
    Filed: October 26, 2018
    Publication date: February 28, 2019
    Inventors: Milton R. Smith, Robert E. Maleczka, Hao Li, Chathurika R.K. Jayasundara, Jossian Oppenheimer, Dmitrijs Sabasovs
  • Patent number: 10166533
    Abstract: Methods for the borylation of aromatic compounds using cobalt catalysts are provided.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: January 1, 2019
    Assignees: Dow AgroSciences LLC, The Board of Regents of the University of Michigan
    Inventors: Milton R. Smith, Robert E. Maleczka, Dmitrijs Sabasovs, Jossian Oppenheimer
  • Publication number: 20180334445
    Abstract: Improved methods of synthesizing 6-aryl-4-aminopicolinates, such as arylalkyl and alkyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylates and arylalkyl and alkyl 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylates, are described herein. The improved methods include a direct Suzuki coupling step, which eliminates the protection/de-protection steps in the current chemical process, and therefore eliminates or reduces various raw materials, equipment and cycle time as well as modification of other process conditions including use of crude AP, use of ABA-diMe, and varying pH, catalyst concentration, solvent composition, and/or workup procedures. This includes synthesis of 2-aryl-6-aminopyrimidine-4-carboxylates.
    Type: Application
    Filed: July 26, 2018
    Publication date: November 22, 2018
    Applicant: Dow AgroSciences LLC
    Inventors: Jason S. F, Xiaoyong Li, Mark Muehlfeld, Robert S. Bauman, Jossian Oppenheimer, Siyu Tu, Mark A. Nitz, Reetam Chakrabarti, Shawn D. Feist, James W. Ringer, Ronald B. Leng
  • Patent number: 10125082
    Abstract: The present disclosure describes a method of coupling a first compound to a second compound, the method comprising: providing the first compound having a fluorosulfonate substituent; providing the second compound comprising an alkene; and reacting the first compound and the second compound in a reaction mixture, the reaction mixture including a catalyst having at least one group 10 atom, the reaction mixture under conditions effective to couple the first compound to the second compound.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: November 13, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Patrick S. Hanley, Jossian Oppenheimer, Matthias S. Ober, William J. Kruper, Jr., Arkady L. Krasovskiy
  • Patent number: 10112960
    Abstract: Methods for the selective borylation of arenes, including arenes substituted with an electron-withdrawing group (e.g., 1-chloro-3-fluoro-2-substituted benzenes) are provided. The methods can be used, in some embodiments, to efficiently and regioselectively prepare borylated arenes without the need for expensive cryogenic reaction conditions.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: October 30, 2018
    Assignees: Dow AgroSciences LLC, The Board of Regents of the Michigan State University
    Inventors: Milton R. Smith, Robert E. Maleczka, Hao Li, Chathurika R. K. Jayasundara, Jossian Oppenheimer, Dmitrijs Sabasovs
  • Patent number: 10087164
    Abstract: Improved methods of synthesizing 6-aryl-4-aminopicolinates, such as arylalkyl and alkyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylates and arylalkyl and alkyl 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylates, are described herein. The improved methods include a direct Suzuki coupling step, which eliminates the protection/de-protection steps in the current chemical process, and therefore eliminates or reduces various raw materials, equipment and cycle time as well as modification of other process conditions including use of crude AP, use of ABA-diMe, and varying pH, catalyst concentration, solvent composition, and/or workup procedures. This invention was expanded to include synthesis of 2-aryl-6-aminopyrimidine-4-carboxylates.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: October 2, 2018
    Assignee: Dow AgroSciences LLC
    Inventors: Jason S. Fisk, Xiaoyong Li, Mark Muehlfeld, Robert S. Bauman, Jossian Oppenheimer, Siyu Tu, Mark A. Nitz, Reetam Chakrabarti, Shawn D. Feist, James W. Ringer, Ronald B. Leng
  • Publication number: 20170334878
    Abstract: Improved methods of synthesizing 6-aryl-4-aminopicolinates, such as arylalky and alkyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylates and arylalkyl and alkyl 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylates, are described herein. The improved methods include a direct Suzuki coupling step, which eliminates the protection/de-protection steps in the current chemical process, and therefore eliminates or reduces various raw materials, equipment and cycle time as well as modification of other process conditions including use of crude AP, use of ABA-diMe, and varying pH, catalyst concentration, solvent composition, and/or workup procedures. This invention was expanded to include synthesis of 2-aryl-6-aminopyrimidine-4-carboxylates.
    Type: Application
    Filed: May 19, 2017
    Publication date: November 23, 2017
    Applicant: Dow AgroSciences LLC
    Inventors: Jason S. Fisk, Xiaoyong Li, Mark Muehlfeld, Robert S. Bauman, Jossian Oppenheimer, Siyu Tu, Mark A. Nitz, Reetam Chakrabarti, Shawn D. Feist, James W. Ringer, Ronald B. Leng
  • Publication number: 20170240499
    Abstract: The present disclosure describes a method of coupling a first compound to a second compound, the method comprising: providing the first compound having a fluorosulfonate substituent; providing the second compound comprising an alkene; and reacting the first compound and the second compound in a reaction mixture, the reaction mixture including a catalyst having at least one group 10 atom, the reaction mixture under conditions effective to couple the first compound to the second compound.
    Type: Application
    Filed: October 8, 2015
    Publication date: August 24, 2017
    Inventors: Patrick S. Hanley, Jossian Oppenheimer, Matthias S. Ober, William J. Kruper, Jr., Arkady L. Krasovskiy
  • Patent number: 9422313
    Abstract: Methods include formation of 4-chloro-2-fluoro-3-substituted-phenylboronic acid pinacol esters. The method comprises contacting a 1-chloro-3-fluoro-2-substituted benzene with an alkyl lithium to form a lithiated 1-chloro-3-fluoro-2-substituted benzene. The lithiated 1-chloro-3-fluoro-2-substituted benzene is contacted with an electrophilic boronic acid derivative to form a 4-chloro-2-fluoro-3-substituted-phenylboronate. The 4-chloro-2-fluoro-3-substituted-phenylboronate is reacted with an aqueous base to form a (4-chloro-2-fluoro-3-substituted-phenyl)trihydroxyborate. The (4-chloro-2-fluoro-3-substituted-phenyl)trihydroxyborate is reacted with an acid to form a 4 chloro-2-fluoro-3-substituted-phenylboronic acid. The 4-chloro-2-fluoro-3-substituted-phenylboronic acid is reacted with 2,3-dimethyl-2,3-butanediol to form 4-chloro-2-fluoro-3-substituted-phenylboronic acid pinacol esters .
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: August 23, 2016
    Assignee: Dow AgroSciences LLC
    Inventor: Jossian Oppenheimer
  • Patent number: 9376390
    Abstract: Methods of isolating a 4-chloro-2-fluoro-3-substituted-phenylboronate include adding carbon dioxide gas or carbon dioxide solid (dry ice) to a solution comprising a 4-chloro-2-fluoro-3-substituted-phenylboronate, an inert organic solvent, and at least one lithium salt to react the at least one lithium salt with the carbon dioxide gas or carbon dioxide solid (dry ice) and form a mixture comprising the 4-chloro-2-fluoro-3-substituted-phenylboronate, the inert organic solvent, and a precipitated solid. The precipitated solid may be removed from the mixture. Methods of using 4-chloro-2-fluoro-3-substituted-phenylboronates to produce methyl-4-amino-3-chloro-6-(4-chloro-2-fluoro-3-substituted-phenyl)pyridine-2-carboxylates are also disclosed.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: June 28, 2016
    Assignee: Dow AgroSciences LLC
    Inventors: Jossian Oppenheimer, Catherine A. Menning, Daniel Randolph Henton
  • Publication number: 20150361109
    Abstract: Methods for the borylation of aromatic compounds using cobalt catalysts are provided.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 17, 2015
    Inventors: Milton R. Smith, Robert E. Maleczka, Dmitrijs Sabasovs, Jossian Oppenheimer
  • Publication number: 20150239843
    Abstract: Methods of isolating a 4-chloro-2-fluoro-3-substituted-phenylboronate include adding carbon dioxide gas or carbon dioxide solid (dry ice) to a solution comprising a 4-chloro-2-fluoro-3-substituted-phenylboronate, an inert organic solvent, and at least one lithium salt to react the at least one lithium salt with the carbon dioxide gas or carbon dioxide solid (dry ice) and form a mixture comprising the 4-chloro-2-fluoro-3-substituted-phenylboronate, the inert organic solvent, and a precipitated solid. The precipitated solid may be removed from the mixture. Methods of using 4-chloro-2-fluoro-3-substituted-phenylboronates to produce methyl-4-amino-3-chloro-6-(4-chloro-2-fluoro-3-substituted-phenyl)pyridine-2-carboxylates are also disclosed.
    Type: Application
    Filed: May 13, 2015
    Publication date: August 27, 2015
    Inventors: Jossian Oppenheimer, Catherine A. Menning, Daniel Randolph Henton
  • Publication number: 20150203514
    Abstract: Methods include formation of 4-chloro-2-fluoro-3-substituted-phenylboronic acid pinacol esters. The method comprises contacting a 1-chloro-3-fluoro-2-substituted benzene with an alkyl lithium to form a lithiated 1-chloro-3-fluoro-2-substituted benzene. The lithiated 1-chloro-3-fluoro-2-substituted benzene is contacted with an electrophilic boronic acid derivative to form a 4-chloro-2-fluoro-3-substituted-phenylboronate. The 4-chloro-2-fluoro-3-substituted-phenylboronate is reacted with an aqueous base to form a (4-chloro-2-fluoro-3-substituted-phenyl)trihydroxyborate. The (4-chloro-2-fluoro-3-substituted-phenyl)trihydroxyborate is reacted with an acid to form a 4 chloro-2-fluoro-3-substituted-phenylboronic acid. The 4-chloro-2-fluoro-3-substituted-phenylboronic acid is reacted with 2,3-dimethyl-2,3-butanediol to form 4-chloro-2-fluoro-3-substituted-phenylboronic acid pinacol esters .
    Type: Application
    Filed: November 6, 2014
    Publication date: July 23, 2015
    Inventor: Jossian Oppenheimer