Patents by Inventor Jovana Nazor

Jovana Nazor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965192
    Abstract: The present invention provides engineered penicillin G acylase (PGA) enzymes having improved properties, polynucleotides encoding such enzymes, compositions including the enzymes, and methods of using the enzymes.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: April 23, 2024
    Assignee: Codexis, Inc.
    Inventors: Jovana Nazor, Vesna Mitchell, David Elgart, Katrina W. Lexa, Nikki Dellas, Robert Kevin Orr, Oscar Alvizo, Ravi David Garcia, Judy Victoria Antonio Viduya, Courtney Dianne Moffett
  • Publication number: 20240076647
    Abstract: The present invention provides engineered deoxyribose-phosphate aldolase polypeptides useful under industrial process conditions for the production of pharmaceutical and fine chemical compounds.
    Type: Application
    Filed: November 7, 2023
    Publication date: March 7, 2024
    Inventors: Da Duan, Oscar Alvizo, Jovana Nazor, Harvinder Chagger Maniar, James Nicholas Riggins, Jonathan Vroom, Santhosh Sivaramakrishnan, Hao Yang, Anna Fryszkowska, Mark A. Huffman, Joshua N. Kolev, Iman Farasat, Agustina Rodriguez-Granillo, Deeptak Verma
  • Publication number: 20240068005
    Abstract: The present invention provides engineered ketoreductase and phosphite dehydrogenase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase and phosphite dehydrogenase enzymes, as well as polynucleotides encoding the engineered ketoreductase and phosphite dehydrogenase enzymes, host cells capable of expressing the engineered ketoreductase and phosphite dehydrogenase enzymes, and methods of using the engineered ketoreductase and phosphite dehydrogenase enzymes to synthesize a chiral catalyst used in the synthesis of antiviral compounds, such as nucleoside inhibitors. The present invention further provides methods of using the engineered enzymes to deracemize a chiral alcohol in a one-pot, multi-enzyme system.
    Type: Application
    Filed: July 14, 2023
    Publication date: February 29, 2024
    Inventors: Jeffrey C. Moore, Jack Liang, Jonathan Penfield, Jovana Nazor, Nikki Dellas, Vesna Mitchell, Da Duan, Iman Farasat, Agustina Rodriguez-Granillo, Grant Murphy, Nicholas Marshall
  • Publication number: 20240060064
    Abstract: The present invention provides engineered phosphopentomutase (PPM) enzymes, polypeptides having PPM activity, and polynucleotides encoding these enzymes, as well as vectors and host cells comprising these polynucleotides and polypeptides. Methods for producing PPM enzymes are also provided. The present invention further provides compositions comprising the PPM enzymes and methods of using the engineered PPM enzymes. The present invention finds particular use in the production of pharmaceutical compounds.
    Type: Application
    Filed: September 14, 2023
    Publication date: February 22, 2024
    Inventors: Scott J. Novick, Xiang Yi, Nikki Dellas, Oscar Alvizo, Jovana Nazor, Da Duan, Vesna Mitchell, Jonathan Vroom, Santhosh Sivaramakrishnan, Nandhitha Subramanian, Jeffrey C. Moore, Mark Huffman, Agustina Rodriguez-Granillo, Deeptak Verma, Grant S. Murphy, Nicholas Marshall, Jay Russell, Keith A. Canada
  • Publication number: 20240002817
    Abstract: The present invention provides engineered pantothenate kinase (PanK) enzymes, polypeptides having PanK activity, and polynucleotides encoding these enzymes, as well as vectors and host cells comprising these polynucleotides and polypeptides. Methods for producing PanK enzymes are also provided. The present invention further provides compositions comprising the PanK enzymes and methods of using the engineered PanK enzymes. The present invention finds particular use in the production of pharmaceutical compounds.
    Type: Application
    Filed: September 29, 2021
    Publication date: January 4, 2024
    Inventors: Jovana Nazor, Mikayla Jianghongxia Krawczyk, Zara Maxine Seibel, Nandhitha Subramanian, Joshua Kolev
  • Patent number: 11845968
    Abstract: The present invention provides engineered deoxyribose-phosphate aldolase polypeptides useful under industrial process conditions for the production of pharmaceutical and fine chemical compounds.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: December 19, 2023
    Assignee: Codexis, Inc.
    Inventors: Da Duan, Oscar Alvizo, Jovana Nazor, Harvinder Chagger Maniar, James Nicholas Riggins, Jonathan Vroom, Santhosh Sivaramakrishnan, Hao Yang, Anna Fryszkowska, Mark A. Huffman, Joshua N. Kolev, Iman Farasat, Agustina Rodriguez-Granillo, Deeptak Verma
  • Publication number: 20230374470
    Abstract: The present invention provides engineered galactose oxidase (GOase) enzymes, polypeptides having GOase activity, and polynucleotides encoding these enzymes, as well as vectors and host cells comprising these polynucleotides and polypeptides. Methods for producing GOase enzymes are also provided. The present invention further provides compositions comprising the GOase enzymes and methods of using the engineered GOase enzymes. The present invention finds particular use in the production of pharmaceutical and other compounds.
    Type: Application
    Filed: October 1, 2021
    Publication date: November 23, 2023
    Inventors: Margie Tabuga Borra-Garske, Jovana Nazor, Nandhitha Subramanian, Oscar Alvizo, Anna Fryszkowska
  • Patent number: 11795445
    Abstract: The present invention provides engineered phosphopentomutase (PPM) enzymes, polypeptides having PPM activity, and polynucleotides encoding these enzymes, as well as vectors and host cells comprising these polynucleotides and polypeptides. Methods for producing PPM enzymes are also provided. The present invention further provides compositions comprising the PPM enzymes and methods of using the engineered PPM enzymes. The present invention finds particular use in the production of pharmaceutical compounds.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: October 24, 2023
    Assignee: Codexis, Inc.
    Inventors: Scott J. Novick, Xiang Yi, Nikki Dellas, Oscar Alvizo, Jovana Nazor, Da Duan, Vesna Mitchell, Jonathan Vroom, Santhosh Sivaramakrishnan, Nandhitha Subramanian, Jeffrey C. Moore, Mark Huffman, Agustina Rodriguez-Granillo, Deeptak Verma, Grant S. Murphy, Nicholas Marshall, Jay Russell, Keith A. Canada
  • Publication number: 20230295673
    Abstract: The present disclosure provides engineered polypeptides having imine reductase activity, polynucleotides encoding the engineered imine reductases, host cells capable of expressing the engineered imine reductases, and methods of using these engineered polypeptides with a range of ketone and amine substrate compounds to prepare secondary and tertiary amine product compounds.
    Type: Application
    Filed: February 17, 2023
    Publication date: September 21, 2023
    Inventors: Haibin Chen, Steven J. Collier, Jovana Nazor, Joly Sukumaran, Derek Smith, Jeffrey C. Moore, Gregory Hughes, Jacob Janey, Gjalt W. Huisman, Scott J. Novick, Nicholas J. Agard, Oscar Alvizo, Gregory A. Cope, Wan Lin Yeo, Stefanie Ng Minor
  • Patent number: 11746369
    Abstract: The present invention provides engineered ketoreductase and phosphite dehydrogenase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase and phosphite dehydrogenase enzymes, as well as polynucleotides encoding the engineered ketoreductase and phosphite dehydrogenase enzymes, host cells capable of expressing the engineered ketoreductase and phosphite dehydrogenase enzymes, and methods of using the engineered ketoreductase and phosphite dehydrogenase enzymes to synthesize a chiral catalyst used in the synthesis of antiviral compounds, such as nucleoside inhibitors. The present invention further provides methods of using the engineered enzymes to deracemize a chiral alcohol in a one-pot, multi-enzyme system.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: September 5, 2023
    Assignee: Codexis, Inc.
    Inventors: Jeffrey C. Moore, Jack Liang, Jonathan Penfield, Jovana Nazor, Nikki Dellas, Vesna Mitchell, Da Duan, Iman Farasat, Agustina Rodriguez-Granillo, Grant Murphy, Nicholas Marshall
  • Publication number: 20230272363
    Abstract: The present invention provides engineered penicillin G acylase (PGA) enzymes, polynucleotides encoding the enzymes, compositions comprising the enzymes, and methods of using the engineered PGA enzymes.
    Type: Application
    Filed: March 23, 2023
    Publication date: August 31, 2023
    Inventors: Rama Voladri, Christopher Michael Micklitsch, Oscar Alvizo, Jovana Nazor, Da Duan, Judy Victoria Antonio Viduya, Stephan Jenne, Chihui An, Keith Allen Canada, Paul N. Devine, Iman Farasat, Anna Fryszkowska, Katrina W. Lexa, Robert Kevin Orr
  • Publication number: 20230272354
    Abstract: The present invention provides engineered proline hydroxylase polypeptides for the production of hydroxylated compounds, polynucleotides encoding the engineered proline hydroxylases, host cells capable of expressing the engineered proline hydroxylases, and methods of using the engineered proline hydroxylases to prepare compounds useful in the production of active pharmaceutical agents.
    Type: Application
    Filed: March 8, 2023
    Publication date: August 31, 2023
    Inventors: Jovana Nazor, Robert Osborne, Jack Liang, Jonathan Vroom, Xiyun Zhang, David Entwistle, Rama Voladri, Ravi David Garcia, Jeffrey C. Moore, Shane Grosser, Birgit Kosjek, Matthew Truppo
  • Publication number: 20230242946
    Abstract: The present disclosure provides engineered enone reductase enzymes (EREDs), polypeptides having ERED activity, and polynucleotides encoding these enzymes, as well as vectors and host cells comprising these polynucleotides and polypeptides. Methods for producing ERED enzymes are also provided. The present disclosure also provides engineered ketoreductase enzymes (KREDs), polypeptides having KRED activity, and polynucleotides encoding these enzymes, as well as vectors and host cells comprising these polynucleotides and polypeptides. Methods for producing KRED enzymes are also provided. The present disclosure further provides compositions comprising the ERED and KRED enzymes and methods of using the engineered ERED and KRED enzymes. The present disclosure finds particular use in the production of pharmaceutical compounds.
    Type: Application
    Filed: February 1, 2023
    Publication date: August 3, 2023
    Inventors: Charlene Ching, David Elgart, Stephan Jenne, Larson Lyle Matzdorff, Jovana Nazor, Marcus Rohovie, Zara Maxine Seibel
  • Publication number: 20230193224
    Abstract: The present disclosure relates to engineered DNA polymerase polypeptides and compositions thereof, as well as polynucleotides encoding the engineered DNA polymerase polypeptides. The present disclosure also provides methods of using the engineered DNA polymerase polypeptides or compositions thereof for diagnostic and other purposes.
    Type: Application
    Filed: October 14, 2022
    Publication date: June 22, 2023
    Inventors: Ericka Bermudez, David Elgart, Nikki D. Kruse, Mathew G. Miller, Vesna Mitchell, Jovana Nazor, Nandhitha Subramanian
  • Publication number: 20230183790
    Abstract: The present disclosure relates to recombinant reverse transcriptase polypeptides and compositions thereof, as well as polynucleotides encoding the recombinant reverse transcriptase polypeptides. The disclosure also provides methods for using the recombinant reverse transcriptase polypeptides and compositions thereof for diagnostic and as molecular biological tools.
    Type: Application
    Filed: October 14, 2022
    Publication date: June 15, 2023
    Inventors: Ericka Bermudez, David Elgart, Mathew G. Miller, Jovana Nazor, Zhe Rui, Nandhitha Subramanian
  • Patent number: 11643642
    Abstract: The present invention provides engineered penicillin G acylase (PGA) enzymes, polynucleotides encoding the enzymes, compositions comprising the enzymes, and methods of using the engineered PGA enzymes.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: May 9, 2023
    Assignee: Codexis, Inc.
    Inventors: Rama Voladri, Christopher Michael Micklitsch, Oscar Alvizo, Jovana Nazor, Da Duan, Judy Victoria Antonio Viduya, Stephan Jenne, Chihui An, Keith Allen Canada, Paul N. Devine, Iman Farasat, Anna Fryszkowska, Katrina W. Lexa, Robert Kevin Orr
  • Patent number: 11634695
    Abstract: The present invention provides engineered proline hydroxylase polypeptides for the production of hydroxylated compounds, polynucleotides encoding the engineered proline hydroxylases, host cells capable of expressing the engineered proline hydroxylases, and methods of using the engineered proline hydroxylases to prepare compounds useful in the production of active pharmaceutical agents.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: April 25, 2023
    Assignee: Codexis, Inc.
    Inventors: Jovana Nazor, Robert Osborne, Jack Liang, Jonathan Vroom, Xiyun Zhang, David Entwistle, Rama Voladri, Ravi David Garcia, Jeffrey C. Moore, Shane Grosser, Birgit Kosjek, Matthew Truppo
  • Patent number: 11618911
    Abstract: The present disclosure provides engineered polypeptides having imine reductase activity, polynucleotides encoding the engineered imine reductases, host cells capable of expressing the engineered imine reductases, and methods of using these engineered polypeptides with a range of ketone and amine substrate compounds to prepare secondary and tertiary amine product compounds.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: April 4, 2023
    Assignee: Codexis, Inc.
    Inventors: Haibin Chen, Steven J. Collier, Jovana Nazor, Joly Sukumaran, Derek Smith, Jeffrey C. Moore, Gregory Hughes, Jacob Janey, Gjalt W. Huisman, Scott J. Novick, Nicholas J. Agard, Oscar Alvizo, Gregory A. Cope, Wan Lin Yeo, Stefanie Ng Minor
  • Publication number: 20230026007
    Abstract: The present invention provides engineered galactose oxidase (GOase) enzymes, polypeptides having GOase activity, and polynucleotides encoding these enzymes, as well as vectors and host cells comprising these polynucleotides and polypeptides. Methods for producing GOase enzymes are also provided. The present invention further provides compositions comprising the GOase enzymes and methods of using the engineered GOase enzymes. The present invention finds particular use in the production of pharmaceutical and other compounds.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 26, 2023
    Inventors: Christopher Michael Micklitsch, Oscar Alvizo, Jovana Nazor, Harvinder Chagger Maniar, Mikayla Jianghongxia Krawczyk, Margie Tabuga Borra-Garske, Nandhitha Subramanian, Anna Fryszkowska, Nicholas M. Marshall, Agustina Rodriguez-Granillo, Deeptak Verma, Dewan Andrews
  • Patent number: 11466259
    Abstract: The present invention provides engineered galactose oxidase (GOase) enzymes, polypeptides having GOase activity, and polynucleotides encoding these enzymes, as well as vectors and host cells comprising these polynucleotides and polypeptides. Methods for producing GOase enzymes are also provided. The present invention further provides compositions comprising the GOase enzymes and methods of using the engineered GOase enzymes. The present invention finds particular use in the production of pharmaceutical and other compounds.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: October 11, 2022
    Assignee: Codexis, Inc.
    Inventors: Christopher Michael Micklitsch, Oscar Alvizo, Jovana Nazor, Harvinder Chagger Maniar, Mikayla Jianghongxia Krawczyk, Margie Tabuga Borra-Garske, Nandhitha Subramanian, Anna Fryszkowska, Nicholas M. Marshall, Agustina Rodriguez-Granillo, Deeptak Verma, Dewan Andrews