Patents by Inventor Joy Roberts

Joy Roberts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10069148
    Abstract: Use of a selectively conducting anode component in solid polymer electrolyte fuel cells can reduce the degradation associated with repeated startup and shutdown, but can also adversely affect a cell's tolerance to voltage reversal along with its performance. It was shown that these adverse affects can be mitigated against in certain ways. However, improved results can be obtained by employing a selectively conducting component which comprises a mixed layer of a selectively conducting material and carbon. The mixed layer contacts the side of the anode opposite the solid polymer electrolyte.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: September 4, 2018
    Assignees: Daimler AG, Ford Motor Company
    Inventors: Francine Berretta, Stephen Lee, Joy Roberts, Stanley Tam, Herwig Haas
  • Patent number: 9564642
    Abstract: The degradation associated with repeated startup and shutdown of solid polymer electrolyte fuel cells comprising PtCo alloy cathode catalysts can be particularly poor. However, a marked and unexpected improvement in durability is observed as a result of incorporating a selectively conducting component in electrical series with the anode components in the fuel cell.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: February 7, 2017
    Assignees: Daimler AG, Ford Motor Company
    Inventors: Herwig Haas, Joy Roberts, Francine Berretta, Amy Shun-Wen Yang
  • Publication number: 20150325859
    Abstract: Use of a selectively conducting anode component in solid polymer electrolyte fuel cells can reduce the degradation associated with repeated startup and shutdown, but can also adversely affect a cell's tolerance to voltage reversal along with its performance. It was shown that these adverse affects can be mitigated against in certain ways. However, improved results can be obtained by employing a selectively conducting component which comprises a mixed layer of a selectively conducting material and carbon. The mixed layer contacts the side of the anode opposite the solid polymer electrolyte.
    Type: Application
    Filed: April 28, 2015
    Publication date: November 12, 2015
    Inventors: Francine Berretta, Stephen Lee, Joy Roberts, Stanley Tam, Herwig Haas
  • Patent number: 8835024
    Abstract: A method for operating a passive, air-breathing fuel cell system is described. In one embodiment, the system comprises one or more fuel cells, and a closed fuel plenum connected to a fuel supply. In some embodiments of the method, the fuel cell cathodes are exposed to ambient air, and the fuel is supplied to the anodes via the fuel plenum at a pressure greater than that of the ambient air.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: September 16, 2014
    Assignee: Societe BIC
    Inventors: Joy Roberts, Joerg Zimmermann, Jeremy Schrooten
  • Publication number: 20140038075
    Abstract: A method for operating a passive, air-breathing fuel cell system is described. In one embodiment, the system comprises one or more fuel cells, and a closed fuel plenum connected to a fuel supply. In some embodiments of the method, the fuel cell cathodes are exposed to ambient air, and the fuel is supplied to the anodes via the fuel plenum at a pressure greater than that of the ambient air.
    Type: Application
    Filed: October 8, 2013
    Publication date: February 6, 2014
    Applicant: Société BIC
    Inventors: Joy Roberts, Joerg Zimmermann, Jeremy Schrooten
  • Publication number: 20140030625
    Abstract: Use of a selectively conducting anode component in solid polymer electrolyte fuel cells can reduce the degradation associated with repeated startup and shutdown, but unfortunately can also adversely affect a cell's tolerance to voltage reversal. Use of a carbon sublayer in such cells can improve the tolerance to voltage reversal, but can adversely affect cell performance. However, employing an appropriate selection of selectively conducting material and carbon sublayer, in which the carbon sublayer is in contact with the side of the anode opposite the solid polymer electrolyte, can provide for cells that exhibit acceptable behaviour in every regard. A suitable selectively conducting material comprises platinum deposited on tin oxide.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 30, 2014
    Inventors: Herwig Haas, Joy Roberts, Francine Berretta, Amy Shun-Wen Yang, Stephen Lee, Sima Ronasi
  • Patent number: 8597806
    Abstract: A method for operating a passive, air-breathing fuel cell system is described. In one embodiment, the system comprises one or more fuel cells, and a closed fuel plenum connected to a fuel supply. In some embodiments of the method, the fuel cell cathodes are exposed to ambient air, and the fuel is supplied to the anodes via the fuel plenum at a pressure greater than that of the ambient air.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: December 3, 2013
    Assignee: Societe BIC
    Inventors: Joy Roberts, Joerg Zimmermann, Jeremy Schrooten
  • Patent number: 8580448
    Abstract: By incorporating a selectively conducting component in electrical series with the anode components in a solid polymer fuel cell, degradation during startup and shutdown can be reduced. As a result, the startup and shutdown procedures can be simplified and consequently certain system apparatus may be omitted. The anode does not need to be rapidly purged with hydrogen on startup or with air on shutdown. Additionally, the auxiliary load usually employed during such purging is not required.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: November 12, 2013
    Assignees: Daimler AG, Ford Motor Company
    Inventors: Herwig Haas, Francine Berretta, Yvonne Hsieh, Guy Pepin, Joy Roberts, Amy Shun-Wen Yang
  • Publication number: 20130236812
    Abstract: The degradation associated with repeated startup and shutdown of solid polymer electrolyte fuel cells comprising PtCo alloy cathode catalysts can be particularly poor. However, a marked and unexpected improvement in durability is observed as a result of incorporating a selectively conducting component in electrical series with the anode components in the fuel cell.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 12, 2013
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Herwig Haas, Joy Roberts, Francine Berretta, Amy Shun-Wen Yang
  • Publication number: 20130236807
    Abstract: The degradation associated with repeated startup and shutdown of solid polymer electrolyte fuel cells comprising PtCo alloy cathode catalysts can be particularly poor. However, a marked and unexpected improvement in durability is observed as a result of incorporating a selectively conducting component in electrical series with the anode components in the fuel cell.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 12, 2013
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Herwig Haas, Joy Roberts, Francine Berretta, Amy Shun-Wen Yang
  • Publication number: 20130017471
    Abstract: To reduce degradation of a solid polymer fuel cell during startup and shutdown, a selectively conducting component is incorporated in electrical series with the anode components in the fuel cell. The component is characterized by a low electrical resistance in the presence of hydrogen or fuel and a high resistance in the presence of air. High cathode potentials can be prevented by integrating such a component into the fuel cell. A suitable selectively conducting component can comprise a layer of selectively conducting material, such as a metal oxide.
    Type: Application
    Filed: December 22, 2010
    Publication date: January 17, 2013
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Herwig Haas, Joy Roberts, Francine Berretta, Amy Shun-Wen Yang, Yvonne Hsieh, Guy Pepin, Andrew Leow, Richard Fellows, Nicolae Barsan
  • Publication number: 20120328967
    Abstract: By incorporating a selectively conducting component in electrical series with the anode components in a solid polymer fuel cell, degradation during startup and shutdown can be reduced. As a result, the startup and shutdown procedures can be simplified and consequently certain system apparatus may be omitted. The anode does not need to be rapidly purged with hydrogen on startup or with air on shutdown. Additionally, the auxiliary load usually employed during such purging is not required.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Herwig Haas, Francine Berretta, Yvonne Hsieh, Guy Pepin, Joy Roberts, Amy Shun-Wen Yang
  • Publication number: 20110070511
    Abstract: Improvements in startup time for an electrochemical fuel cell system from freezing and sub-freezing temperatures may be observed by minimizing the coolant volume in the coolant subsystem. In particular, this may be accomplished by having a two pump—dual loop cooling subsystem. During startup, one pump directs coolant through a startup coolant loop and after either the fuel cell stack or the coolant temperature reaches a predetermined threshold value, coolant from a main or standard coolant loop is then directed to the fuel cell stack. In an embodiment, coolant from the standard loop mixes with coolant in the startup loop after the predetermined threshold temperature is reached.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 24, 2011
    Applicants: DAIMLER AG, FORD MOTOR COMPANY
    Inventors: Amy E. Nelson, Bruce Lin, Joy A. Roberts, Uwe M. Limbeck, Craig R. Louie, Peter J. Bach
  • Patent number: 7482085
    Abstract: An electric power generation system has elements that improve the cold start capability and freeze tolerance of a constituent fuel cell stack cooperate to reduce the amount of water remaining within the passages of the stack. The system includes a purge system that is connectable to the oxidant supply, fuel supply and/or coolant passages upstream of the stack. When the stack is shut down, the stack is disconnected from an external circuit, and purge fluid is transmitted by the purge system through the stack before the stack falls below the freezing point of water. In systems where fuel and/or oxidant streams are humidified prior to entry into the stack, a humidifier bypass system may be provided in place of the purge system. The humidifier bypass system transmits reactant fluid to the stack in fluid isolation from the humidifier, so that the inlet reactant streams are unhumidified.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: January 27, 2009
    Assignee: BDF IP Holdings Ltd.
    Inventors: Joy A Roberts, Jean St-Pierre, Marian E van der Geest, Abderrahmane Atbi, Nicholas J Fletcher
  • Publication number: 20070196701
    Abstract: A method for operating a passive, air-breathing fuel cell system is described. In one embodiment, the system comprises one or more fuel cells, and a closed fuel plenum connected to a fuel supply. In some embodiments of the method, the fuel cell cathodes are exposed to ambient air, and the fuel is supplied to the anodes via the fuel plenum at a pressure greater than that of the ambient air.
    Type: Application
    Filed: January 25, 2007
    Publication date: August 23, 2007
    Inventors: Joy Roberts, Joerg Zimmermann, Jeremy Schrooten
  • Publication number: 20050175875
    Abstract: Improvements in startup time for an electrochemical fuel cell system from freezing and sub-freezing temperatures may be observed by minimizing the coolant volume in the coolant subsystem. In particular, this may be accomplished by having a two pump—dual loop cooling subsystem. During startup, one pump directs coolant through a startup coolant loop and after either the fuel cell stack or the coolant temperature reaches a predetermined threshold value, coolant from a main or standard coolant loop is then directed to the fuel cell stack. In an embodiment, coolant from the standard loop mixes with coolant in the startup loop after the predetermined threshold temperature is reached.
    Type: Application
    Filed: September 8, 2004
    Publication date: August 11, 2005
    Inventors: Amy Nelson, Bruce Lin, Joy Roberts, Uwe Limbeck, Craig Louie, Peter Bach
  • Publication number: 20050112418
    Abstract: An electric power generation system has elements that improve the cold start capability and freeze tolerance of a constituent fuel cell stack cooperate to reduce the amount of water remaining within the passages of the stack. The system includes a purge system that is connectable to the oxidant supply, fuel supply and/or coolant passages upstream of the stack. When the stack is shut down, the stack is disconnected from an external circuit, and purge fluid is transmitted by the purge system through the stack before the stack falls below the freezing point of water. In systems where fuel and/or oxidant streams are humidified prior to entry into the stack, a humidifier bypass system may be provided in place of the purge system. The humidifier bypass system transmits reactant fluid to the stack in fluid isolation from the humidifier, so that the inlet reactant streams are unhumidified.
    Type: Application
    Filed: April 26, 2004
    Publication date: May 26, 2005
    Inventors: Joy Roberts, Jean St-Pierre, Marian van der Geest, Abderrahmane Atbi, Nicholas Fletcher
  • Patent number: 6841285
    Abstract: The electrochemical performance of an ion-exchange membrane in a fuel cell system may be improved by impregnating therein a perfluoroamine. The amine may be primary, secondary or tertiary. Further, the amine is preferably water insoluble or only slightly water soluble. For example, the amine may be perfluorotriamylamine or perfluorotributylamine. Use of such a membrane system within a fuel cell may allow high or low temperature operation (i.e. at temperatures greater than 100° C. or less than 0° C.) as well as operation at low relative humidity.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: January 11, 2005
    Assignee: Ballard Power Systems Inc.
    Inventors: David P. Wilkinson, Joy A. Roberts, Nengyou Jia, Eagranie Yuh, Shanna D. Knights, Jean St-Pierre
  • Publication number: 20040234845
    Abstract: A method and apparatus increase the temperature of a fuel cell via reactant starvation at one or both electrodes. Reactant starvation at an electrode results in an increased overvoltage at the electrode and hence increased internal heat generation under load. Further, starvation techniques may be used to prevent poisoning of electrode catalysts, a potential problem that is aggravated at lower temperatures. Starvation conditions can be prolonged or intermittent and can be obtained, for example, by suitably reducing the supply rate of a reactant or by operating the fuel cell at sufficiently high current density so as to consume reactant faster than it is supplied. The method can allow for some generation of useful power by the fuel cell during start-up. The method is particularly suitable for starting up a solid polymer electrolyte fuel cell from temperatures below 0° C.
    Type: Application
    Filed: June 17, 2004
    Publication date: November 25, 2004
    Inventors: Joy Roberts, Marian van der Geest, Jean St-Pierre, David P. Wilkinson, Alvin Lee, Stephanie Moroz
  • Patent number: 6764780
    Abstract: A method and apparatus increase the temperature of a fuel cell via reactant starvation at one or both electrodes. Reactant starvation at an electrode results in increased internal heat generation under load. Starvation conditions can be prolonged or intermittent and can be obtained, for example, by suitably reducing the supply rate of a reactant or by operating the fuel cell at sufficiently high current density so as to consume reactant faster than it is supplied. The method can allow for some generation of useful power by the fuel cell during start-up. The method is particularly suitable for starting up a solid polymer electrolyte fuel cell from temperatures below 0° C.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: July 20, 2004
    Assignee: Ballard Power Systems Inc.
    Inventors: Joy Roberts, Marian van der Geest, Jean St-Pierre, David P. Wilkinson, Alvin Lee, Stephanie Moroz