Patents by Inventor Joy T. Jones

Joy T. Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140284748
    Abstract: A light sensor is described that includes a glass substrate having a diffuser formed therein and at least one color filter integrated on-chip (i.e., integrated on the die of the light sensor). In one or more implementations, the light sensor comprises a semiconductor device (e.g., a die) that includes a semiconductor substrate. At least one photodetector (e.g., photodiode, phototransistor, etc.) is formed in the substrate proximate to the surface of the substrate. The color filter is configured to filter light received by the light sensor to pass light in a limited spectrum of wavelengths (e.g., light having wavelengths between a first wavelength and a second wavelength) to the photodetector. A glass substrate is positioned over the substrate and includes a diffuser. The diffuser is configured to diffuse light incident on the diffuser and to pass the diffused light to the at least one color filter for further filtering.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones
  • Publication number: 20140268341
    Abstract: A planar diffractive optical element (DOE) lens is described herein. The planar DOE lens includes a substrate. The planar DOE lens further includes a first layer, the first layer being formed upon the substrate. The planar DOE lens further includes a diffractive optical element, the diffractive optical element being formed upon the first layer. The planar DOE lens further includes a second layer, the second layer being formed upon the first layer. The second layer is also formed over the diffractive optical element. The second layer encloses the diffractive optical element between the first layer and the second layer. The second layer includes a planar surface.
    Type: Application
    Filed: June 28, 2013
    Publication date: September 18, 2014
    Applicant: Maxim Integrated Products, Inc.
    Inventors: Patrick Tam, Joy T. Jones, Nicole D. Kerness, Arvin Emadi
  • Publication number: 20140264711
    Abstract: Light sensors are described that include a trench structure integrated therein. In an implementation, the light sensor includes a substrate having a dopant material of a first conductivity type and multiple trenches disposed therein. The light sensor also includes a diffusion region formed proximate to the multiple trenches. The diffusion region includes a dopant material of a second conductivity type. A depletion region is created at the interface of the dopant material of the first conductivity type and the dopant material of the second conductivity type. The depletion region is configured to attract charge carriers to the depletion region, at least substantially a majority of the charge carriers generated due to light incident upon the substrate.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Christopher F. Edwards, Khanh Tran, Joy T. Jones, Pirooz Parvarandeh
  • Publication number: 20140231635
    Abstract: Optical devices are described that integrate multiple heterogeneous components in a single, compact package. In one or more implementations, the optical devices include a carrier substrate having a surface that includes two or more cavities formed therein. One or more optical component devices are disposed within the respective cavities in a predetermined arrangement. A cover is disposed on the surface of the carrier substrate so that the cover at least substantially encloses the optical component devices within their respective cavities. The cover, which may be glass, is configured to transmit light within the predetermined spectrum of wavelengths.
    Type: Application
    Filed: December 27, 2013
    Publication date: August 21, 2014
    Applicant: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Joy T. Jones, Christopher F. Edwards, Arkadii V. Samoilov, Phillip J. Benzel, Richard I. Olsen, Peter R. Harper
  • Patent number: 8803068
    Abstract: Techniques are described to furnish an IR suppression filter, or any other interference based filter, that is formed on a transparent substrate to a light sensor. In one or more implementations, a light sensor includes a substrate having a surface. One or more photodetectors are formed in the substrate. The photodetectors are configured to detect light and provide a signal in response thereto. An IR suppression filter configured to block infrared light from reaching the surface is formed on a transparent substrate. The light sensor may also include a plurality of color pass filters disposed over the surface. The color pass filters are configured to filter visible light to pass light in a limited spectrum of wavelengths to the one or more photodetectors. A buffer layer is disposed over the surface and configured to encapsulate the plurality of color pass filters and adhesion layer.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: August 12, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones
  • Patent number: 8791404
    Abstract: Techniques are described to furnish an IR suppression filter that is formed on a glass substrate to a light sensor. In one or more implementations, a light sensor includes a substrate having a surface. One or more photodetectors are formed in the substrate and configured to detect light and provide a signal in response thereto. An IR suppression filter configured to block infrared light from reaching the surface is formed on a glass substrate. The light sensor also includes a plurality of color pass filters disposed over the surface. The color pass filters are configured to filter visible light to pass light in a limited spectrum of wavelengths to the one or more photodetectors. A buffer layer is disposed over the surface and configured to encapsulate the plurality of color pass filters and adhesion layer. The light sensor further includes through-silicon vias to provide electrical interconnections between different conductive layers.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: July 29, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones
  • Patent number: 8779540
    Abstract: Light sensor devices are described that have a glass substrate, which includes a lens to focus light over a wide variety of angles, bonded to the light sensor device. In one or more implementations, the light sensor devices include a substrate having a photodetector formed therein. The photodetector is capable of detecting light and providing a signal in response thereto. The sensors also include one or more color filters disposed over the photodetector. The color filters are configured to pass light in a limited spectrum of wavelengths to the photodetector. A glass substrate is disposed over the substrate and includes a lens that is configured to collimate light incident on the lens and to pass the collimated light to the color filter.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: July 15, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones
  • Patent number: 8749007
    Abstract: A light sensor is described that includes a glass substrate having a diffuser formed therein and at least one color filter integrated on-chip (i.e., integrated on the die of the light sensor). In one or more implementations, the light sensor comprises a semiconductor device (e.g., a die) that includes a semiconductor substrate. At least one photodetector (e.g., photodiode, phototransistor, etc.) is formed in the substrate proximate to the surface of the substrate. The color filter is configured to filter light received by the light sensor to pass light in a limited spectrum of wavelengths (e.g., light having wavelengths between a first wavelength and a second wavelength) to the photodetector. A glass substrate is positioned over the substrate and includes a diffuser. The diffuser is configured to diffuse light incident on the diffuser and to pass the diffused light to the at least one color filter for further filtering.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: June 10, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones
  • Publication number: 20140124797
    Abstract: Aspects of the disclosure pertain to a system and method for reducing ambient light sensitivity of Infrared (IR) detectors. Optical filter(s) (e.g., absorption filter(s), interference filter(s)) placed over a sensor of the IR detector (e.g., gesture sensor) absorb or reflect visible light, while passing specific IR wavelengths, for promoting the reduced ambient light sensitivity of the IR detector.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Applicant: Maxim Integrated Products, Inc.
    Inventors: Joy T. Jones, Nicole D. Kerness, Sunny K. Hsu, Anand Chamakura, Christopher F. Edwards, David Skurnik, Phillip J. Benzel, Nevzat A. Kestelli
  • Publication number: 20120187515
    Abstract: Light sensor devices are described that have a glass substrate, which includes a lens to focus light over a wide variety of angles, bonded to the light sensor device. In one or more implementations, the light sensor devices include a substrate having a photodetector formed therein. The photodetector is capable of detecting light and providing a signal in response thereto. The sensors also include one or more color filters disposed over the photodetector. The color filters are configured to pass light in a limited spectrum of wavelengths to the photodetector. A glass substrate is disposed over the substrate and includes a lens that is configured to collimate light incident on the lens and to pass the collimated light to the color filter.
    Type: Application
    Filed: December 27, 2011
    Publication date: July 26, 2012
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones
  • Publication number: 20120187280
    Abstract: Techniques are described to furnish an IR suppression filter, or any other interference based filter, that is formed on a transparent substrate to a light sensor. In one or more implementations, a light sensor includes a substrate having a surface. One or more photodetectors are formed in the substrate. The photodetectors are configured to detect light and provide a signal in response thereto. An IR suppression filter configured to block infrared light from reaching the surface is formed on a transparent substrate. The light sensor may also include a plurality of color pass filters disposed over the surface. The color pass filters are configured to filter visible light to pass light in a limited spectrum of wavelengths to the one or more photodetectors. A buffer layer is disposed over the surface and configured to encapsulate the plurality of color pass filters and adhesion layer.
    Type: Application
    Filed: December 27, 2011
    Publication date: July 26, 2012
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones
  • Publication number: 20120187281
    Abstract: Techniques are described to furnish an IR suppression filter that is formed on a glass substrate to a light sensor. In one or more implementations, a light sensor includes a substrate having a surface. One or more photodetectors are formed in the substrate and configured to detect light and provide a signal in response thereto. An IR suppression filter configured to block infrared light from reaching the surface is formed on a glass substrate. The light sensor also includes a plurality of color pass filters disposed over the surface. The color pass filters are configured to filter visible light to pass light in a limited spectrum of wavelengths to the one or more photodetectors. A buffer layer is disposed over the surface and configured to encapsulate the plurality of color pass filters and adhesion layer. The light sensor further includes through-silicon vias to provide electrical interconnections between different conductive layers.
    Type: Application
    Filed: December 27, 2011
    Publication date: July 26, 2012
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Zhihai Wang, Joy T. Jones