Patents by Inventor Jr-Hung Li

Jr-Hung Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210183696
    Abstract: In an embodiment, a method includes: forming a differential contact etch stop layer (CESL) having a first portion over a source/drain region and a second portion along a gate stack, the source/drain region being in a substrate, the gate stack being over the substrate proximate the source/drain region, a first thickness of the first portion being greater than a second thickness of the second portion; depositing a first interlayer dielectric (ILD) over the differential CESL; forming a source/drain contact opening in the first ILD; forming a contact spacer along sidewalls of the source/drain contact opening; after forming the contact spacer, extending the source/drain contact opening through the differential CESL; and forming a first source/drain contact in the extended source/drain contact opening, the first source/drain contact physically and electrically coupling the source/drain region, the contact spacer physically separating the first source/drain contact from the first ILD.
    Type: Application
    Filed: February 8, 2021
    Publication date: June 17, 2021
    Inventors: Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chung-Ting Ko, Jr-Hung Li, Chi On Chui
  • Publication number: 20210098584
    Abstract: A semiconductor device includes a substrate, a gate structure on the substrate, a source/drain (S/D) region and a contact. The S/D region is located in the substrate and on a side of the gate structure. The contact lands on and connected to the S/D region. The contact wraps around the S/D region.
    Type: Application
    Filed: March 2, 2020
    Publication date: April 1, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Hsien Cheng, Jr-Hung Li, Tai-Chun Huang, Tze-Liang Lee, Chung-Ting Ko, Jr-Yu Chen, Wan-Chen Hsieh
  • Publication number: 20210098365
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a substrate, a gate structure, a dielectric structure and a contact structure. The substrate has source/drain (S/D) regions. The gate structure is on the substrate and between the S/D regions. The dielectric structure covers the gate structure. The contact structure penetrates through the dielectric structure to connect to the S/D region. A lower portion of a sidewall of the contact structure is spaced apart from the dielectric structure by an air gap therebetween, while an upper portion of the sidewall of the contact structure is in contact with the dielectric structure.
    Type: Application
    Filed: March 2, 2020
    Publication date: April 1, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Pei-Yu Chou, Jr-Hung Li, Liang-Yin Chen, Su-Hao Liu, Tze-Liang Lee, Meng-Han Chou, Kuo-Ju Chen, Huicheng Chang, Tsai-Jung Ho, Tzu-Yang Ho
  • Publication number: 20210091191
    Abstract: A field effect transistor includes a semiconductor substrate, source and drain regions, lower source and drain contacts, a metal gate, a first interlayer dielectric layer, a capping layer, and an etch stop layer. The source and drain regions are disposed on the semiconductor substrate. The lower source and drain contacts are disposed on the source and drain regions. The metal gate is disposed in between the lower source and drain contacts. The first interlayer dielectric layer encircles the metal gate and the lower source and drain contacts. The capping layer is disposed on the metal gate. The etch stop layer extends on the first interlayer dielectric layer. An etching selectivity for the etch stop layer over the capping layer is greater than 10.
    Type: Application
    Filed: March 2, 2020
    Publication date: March 25, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsai-Jung Ho, Jr-Hung Li, Tze-Liang Lee, Pei-Yu Chou, Chi-Ta Lee
  • Patent number: 10943818
    Abstract: In an embodiment, a method includes: forming a differential contact etch stop layer (CESL) having a first portion over a source/drain region and a second portion along a gate stack, the source/drain region being in a substrate, the gate stack being over the substrate proximate the source/drain region, a first thickness of the first portion being greater than a second thickness of the second portion; depositing a first interlayer dielectric (ILD) over the differential CESL; forming a source/drain contact opening in the first ILD; forming a contact spacer along sidewalls of the source/drain contact opening; after forming the contact spacer, extending the source/drain contact opening through the differential CESL; and forming a first source/drain contact in the extended source/drain contact opening, the first source/drain contact physically and electrically coupling the source/drain region, the contact spacer physically separating the first source/drain contact from the first ILD.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: March 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chung-Ting Ko, Jr-Hung Li, Chi On Chui
  • Publication number: 20210005602
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a first gate structure formed over a fin structure, and a conductive layer formed over the first gate structure. The FinFET device structure includes a first capping layer formed over the conductive layer, and a top surface of the conductive layer is in direct contact with a bottom surface of the first capping layer.
    Type: Application
    Filed: September 17, 2020
    Publication date: January 7, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Han CHEN, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG, Jr-Hung LI, Bo-Cyuan LU
  • Patent number: 10854521
    Abstract: Gate structures and gate spacers, along with methods of forming such, are described. In an embodiment, a structure includes an active area on a substrate, a gate structure on the active area and over the substrate, and a low-k gate spacer on the active area and along a sidewall of the gate structure. The gate structure includes a conformal gate dielectric on the active area and includes a gate electrode over the conformal gate dielectric. The conformal gate dielectric extends vertically along a first sidewall of the low-k gate spacer. In some embodiments, the low-k gate spacer can be formed using a selective deposition process after a dummy gate structure has been removed in a replacement gate process.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: December 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Cyuan Lu, Chunyao Wang, Jr-Hung Li, Chung-Ting Ko, Chi On Chui
  • Patent number: 10840357
    Abstract: A FinFET device and a method of forming the same are provided. A method includes forming a fin extending above an isolation region. A sacrificial gate is formed over the fin. A first dielectric material is selectively deposited on sidewalls of the sacrificial gate to form spacers on the sidewalls of the sacrificial gate. The fin is patterned using the sacrificial gate and the spacers as a combined mask to form a recess in the fin. An epitaxial source/drain region is formed in the recess.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: November 17, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ting Ko, Bo-Cyuan Lu, Jr-Hung Li, Chi On Chui
  • Patent number: 10804271
    Abstract: Methods of forming a differential layer, such as a Contact Etch Stop Layer (CESL), in a semiconductor device are described herein, along with structures formed by the methods. In an embodiment, a structure includes an active area on a substrate, a gate structure over the active area, a gate spacer along a sidewall of the gate structure, and a differential etch stop layer. The differential etch stop layer has a first portion along a sidewall of the gate spacer and has a second portion over an upper surface of the source/drain region. A first thickness of the first portion is in a direction perpendicular to the sidewall of the gate spacer, and a second thickness of the second portion is in a direction perpendicular to the upper surface of the source/drain region. The second thickness is greater than the first thickness.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 13, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ting Ko, Jr-Hung Li, Chi On Chui
  • Patent number: 10797050
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a first gate structure formed over a fin structure, and a first capping layer formed over the first gate structure. The FinFET device structure includes a first etching stop layer formed over the first capping layer and the first gate structure, and a top surface and a sidewall surface of the first capping layer are in direct contact with the first etching stop layer.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: October 6, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Han Chen, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Jr-Hung Li, Bo-Cyuan Lu
  • Patent number: 10763104
    Abstract: Methods of forming a differential layer, such as a Contact Etch Stop Layer (CESL), in a semiconductor device are described herein, along with structures formed by the methods. In an embodiment, a structure includes an active area on a substrate, a gate structure over the active area, a gate spacer along a sidewall of the gate structure, and a differential etch stop layer. The differential etch stop layer has a first portion along a sidewall of the gate spacer and has a second portion over an upper surface of the source/drain region. A first thickness of the first portion is in a direction perpendicular to the sidewall of the gate spacer, and a second thickness of the second portion is in a direction perpendicular to the upper surface of the source/drain region. The second thickness is greater than the first thickness.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: September 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ting Ko, Jr-Hung Li, Chi On Chui
  • Publication number: 20200135550
    Abstract: In an embodiment, a method includes: forming a differential contact etch stop layer (CESL) having a first portion over a source/drain region and a second portion along a gate stack, the source/drain region being in a substrate, the gate stack being over the substrate proximate the source/drain region, a first thickness of the first portion being greater than a second thickness of the second portion; depositing a first interlayer dielectric (ILD) over the differential CESL; forming a source/drain contact opening in the first ILD; forming a contact spacer along sidewalls of the source/drain contact opening; after forming the contact spacer, extending the source/drain contact opening through the differential CESL; and forming a first source/drain contact in the extended source/drain contact opening, the first source/drain contact physically and electrically coupling the source/drain region, the contact spacer physically separating the first source/drain contact from the first ILD.
    Type: Application
    Filed: June 3, 2019
    Publication date: April 30, 2020
    Inventors: Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chung-Ting Ko, Jr-Hung Li, Chi On Chui
  • Publication number: 20200123656
    Abstract: A system and method for plasma enhanced deposition processes. An exemplary semiconductor manufacturing system includes a susceptor configured to hold a semiconductor wafer and a sector disposed above the susceptor. The sector includes a first plate and an overlying second plate, operable to form a plasma there between. The first plate includes a plurality of holes extending through the first plate, which vary in at least one of diameter and density from a first region of the first plate to a second region of the first plate.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Inventors: Kun-Mo LIN, Yi-Hung LIN, Jr-Hung LI, Tze-Liang LEE, Ting-Gang CHEN, Chung-Ting KO
  • Publication number: 20200111867
    Abstract: Semiconductor devices and methods of fabricating semiconductor devices are provided. The present disclosure provides a semiconductor device that includes a first fin structure and a second fin structure each extending from a substrate; a first gate segment over the first fin structure and a second gate segment over the second fin structure; a first isolation feature separating the first and second gate segments; a first source/drain (S/D) feature over the first fin structure and adjacent to the first gate segment; a second S/D feature over the second fin structure and adjacent to the second gate segment; and a second isolation feature also disposed in the trench. The first and second S/D features are separated by the second isolation feature, and a composition of the second isolation feature is different from a composition of the first isolation feature.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 9, 2020
    Inventors: I-Wen Wu, Fu-Kai Yang, Chen-Ming B. Lee, Mei-Yun Wang, Jr-Hung Li, Bo-Cyuan Lu
  • Publication number: 20200075419
    Abstract: Gate structures and gate spacers, along with methods of forming such, are described. In an embodiment, a structure includes an active area on a substrate, a gate structure on the active area and over the substrate, and a low-k gate spacer on the active area and along a sidewall of the gate structure. The gate structure includes a conformal gate dielectric on the active area and includes a gate electrode over the conformal gate dielectric. The conformal gate dielectric extends vertically along a first sidewall of the low-k gate spacer. In some embodiments, the low-k gate spacer can be formed using a selective deposition process after a dummy gate structure has been removed in a replacement gate process.
    Type: Application
    Filed: November 5, 2019
    Publication date: March 5, 2020
    Inventors: Bo-Cyuan Lu, Chunyao Wang, Jr-Hung Li, Chung-Ting Ko, Chi On Chui
  • Publication number: 20200058793
    Abstract: A method for forming a semiconductor device structure is provided. The method includes providing a substrate. The method includes forming a gate structure over the substrate. The gate structure has a first sidewall. The method includes forming a spacer element over the first sidewall of the gate structure. The method includes forming a source/drain portion adjacent to the spacer element and the gate structure. The source/drain portion has a first top surface. The method includes depositing an etch stop layer over the first top surface of the source/drain portion. The etch stop layer is made of nitride. The method includes forming a dielectric layer over the etch stop layer. The dielectric layer has a second sidewall and a bottom surface, the etch stop layer is in direct contact with the bottom surface, and the spacer element is in direct contact with the second sidewall.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 20, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Ting KO, Bo-Cyuan LU, Jr-Hung LI, Chi-On CHUI
  • Publication number: 20200043799
    Abstract: An etch stop layer is formed over a semiconductor fin and gate stack. The etch stop layer is formed utilizing a series of pulses of precursor materials. A first pulse introduces a first precursor material to the semiconductor fin and gate stack. A second pulse introduces a second precursor material, which is turned into a plasma and then directed towards the semiconductor fin and gate stack in an anisotropic deposition process. As such, a thickness of the etch stop layer along a bottom surface is larger than a thickness of the etch stop layer along sidewalls.
    Type: Application
    Filed: December 7, 2018
    Publication date: February 6, 2020
    Inventors: Chun-Yi Lee, Hong-Hsien Ke, Chung-Ting Ko, Chia-Hui Lin, Jr-Hung Li
  • Publication number: 20200043924
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a first gate structure formed over a fin structure, and a first capping layer formed over the first gate structure. The FinFET device structure includes a first etching stop layer formed over the first capping layer and the first gate structure, and a top surface and a sidewall surface of the first capping layer are in direct contact with the first etching stop layer.
    Type: Application
    Filed: October 8, 2019
    Publication date: February 6, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Han CHEN, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG, Jr-Hung LI, Bo-Cyuan LU
  • Publication number: 20200035814
    Abstract: A FinFET device and a method of forming the same are provided. A method includes forming a fin extending above an isolation region. A sacrificial gate is formed over the fin. A first dielectric material is selectively deposited on sidewalls of the sacrificial gate to form spacers on the sidewalls of the sacrificial gate. The fin is patterned using the sacrificial gate and the spacers as a combined mask to form a recess in the fin. An epitaxial source/drain region is formed in the recess.
    Type: Application
    Filed: October 4, 2019
    Publication date: January 30, 2020
    Inventors: Chung-Ting Ko, Bo-Cyuan Lu, Jr-Hung Li, Chi On Chui
  • Publication number: 20200032415
    Abstract: An IC fabrication system for facilitating improved thermal uniformity includes a chamber within which an IC process is performed on a substrate, a heating mechanism configured to heat the substrate, and a substrate-retaining device configured to retain the substrate in the chamber. The substrate-retaining device includes a contact surface configured to contact an edge of the retained substrate without the substrate-retaining device contacting a circumferential surface of the retained substrate. The substrate-retaining device includes a plurality of contact regions and a plurality of noncontact regions disposed at a perimeter, where the plurality of noncontact regions is interspersed with the plurality of contact regions. Each of the plurality of noncontact regions includes the contact surface.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Inventors: Yi-Hung Lin, Jr-Hung Li, Chang-Shen Lu, Tze-Liang Lee, Chii-Horng Li