Patents by Inventor Juan Carlos Rocha-Alvarez

Juan Carlos Rocha-Alvarez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145252
    Abstract: Exemplary semiconductor processing chamber faceplates may include a body having a first surface and a second surface opposite the first surface. The body may define a plurality of apertures that extend through one or both of the first surface and the second surface. The faceplates may include a heater disposed within an interior of the body. The faceplates may include a first RF mesh disposed between the heater and the first surface. The faceplates may include a second RF mesh disposed between the heater and the second surface. The first RF mesh and the second RF mesh may be coupled together and form a Faraday cage about the heater.
    Type: Application
    Filed: November 2, 2022
    Publication date: May 2, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Rutvij Naik, Vijay Sarthy Mysore Sreedhara, Xiaopu Li, Shawyon Jafari, Chidambara A. Ramalingam, Edward P. Hammond, Juan Carlos Rocha-Alvarez
  • Patent number: 11952660
    Abstract: A processing chamber may include a gas distribution member, a substrate support, and a pumping liner. The gas distribution member and the substrate support may at least in part define a processing volume. The pumping liner may define an internal volume in fluid communication with the processing volume via a plurality of apertures of the pumping liner circumferentially disposed about the processing volume. The processing chamber may further include a flow control mechanism operable to direct fluid flow from the internal volume of the pumping liner into the processing volume via a subset of the plurality of apertures of the pumping liner during fluid distribution into the processing volume from the gas distribution member.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Nitin Pathak, Yuxing Zhang, Tuan A. Nguyen, Kalyanjit Ghosh, Amit Bansal, Juan Carlos Rocha-Alvarez
  • Patent number: 11952663
    Abstract: Exemplary semiconductor processing chambers may include a substrate support including a top surface. A peripheral edge region of the top surface may be recessed relative to a medial region of the top surface. The chambers may include a pumping liner disposed about an exterior surface of the substrate support. The chambers may include a liner disposed between the substrate support and the pumping liner. The liner may be spaced apart from the exterior surface to define a purge lumen between the liner and the substrate support. The chambers may include an edge ring seated on the peripheral edge region. The edge ring may extend beyond a peripheral edge of the substrate support and above a portion of the liner. A gap may be formed between a bottom surface of the edge ring and a top surface of the liner. The gap and the purge lumen may be fluidly coupled.
    Type: Grant
    Filed: May 8, 2023
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Nitin Pathak, Tuan A. Nguyen, Amit Bansal, Badri N. Ramamurthi, Thomas Rubio, Juan Carlos Rocha-Alvarez
  • Patent number: 11946686
    Abstract: A fluid delivery device is disclosed. The fluid delivery device includes a fluid flow meter. The fluid flow meter is enclosed in an insulated box. An intake is provided on the insulated box for providing a forced cooling gas flow over the fluid flow meter. An exhaust is provided on the insulated box from which the forced cooling gas exits the insulated box.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Shailendra Srivastava, Syed Alam, Nikhil Sudhindrarao Jorapur, Daemian Raj Benjamin Raj, Juan Carlos Rocha-Alvarez
  • Patent number: 11898249
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: February 13, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward W. Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Patent number: 11901209
    Abstract: Exemplary support assemblies may include an electrostatic chuck body defining a substrate support surface. The substrate support assemblies may include a support stem coupled with the electrostatic chuck body. The substrate support assemblies may include a heater embedded within the electrostatic chuck body. The substrate support assemblies may include a first bipolar electrode embedded within the electrostatic chuck body between the heater and the substrate support surface. The first bipolar electrode may include at least two separated mesh sections, with each mesh section characterized by a circular sector shape. The substrate support assemblies may include a second bipolar electrode embedded within the electrostatic chuck body between the heater and the substrate support surface. The second bipolar electrode may include a continuous mesh extending through the at least two separated mesh sections of the first bipolar electrode.
    Type: Grant
    Filed: February 21, 2023
    Date of Patent: February 13, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Jian Li, Zheng J. Ye, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez
  • Publication number: 20240044000
    Abstract: A faceplate for a substrate process chamber comprises a first and second surface. The second surface is shaped such that the second surface includes a peak and a distance between the first and second surface varies across the width of the faceplate. The second surface of the faceplate is exposed to a processing volume of the process chamber. Further, the faceplate may be part of a lid assembly for the process chamber. The lid assembly may include a blocker plate facing the first surface of the faceplate. A distance between the blocker plate and the first surface is constant.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Inventors: Shailendra SRIVASTAVA, Sai Susmita ADDEPALLI, Nikhil Sudhindrarao JORAPUR, Daemian Raj BENJAMIN RAJ, Amit Kumar BANSAL, Juan Carlos ROCHA-ALVAREZ, Gregory Eugene CHICHKANOFF, Xinhai HAN, Masaki OGATA, Kristopher ENSLOW, Wenjiao WANG
  • Patent number: 11851759
    Abstract: A faceplate for a substrate process chamber comprises a first and second surface. The second surface is shaped such that the second surface includes a peak and a distance between the first and second surface varies across the width of the faceplate. The second surface of the faceplate is exposed to a processing volume of the process chamber. Further, the faceplate may be part of a lid assembly for the process chamber. The lid assembly may include a blocker plate facing the first surface of the faceplate. A distance between the blocker plate and the first surface is constant.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: December 26, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shailendra Srivastava, Sai Susmita Addepalli, Nikhil Sudhindrarao Jorapur, Daemian Raj Benjamin Raj, Amit Kumar Bansal, Juan Carlos Rocha-Alvarez, Gregory Eugene Chichkanoff, Xinhai Han, Masaki Ogata, Kristopher Enslow, Wenjiao Wang
  • Publication number: 20230392259
    Abstract: Exemplary semiconductor processing chambers may include a substrate support including a top surface. A peripheral edge region of the top surface may be recessed relative to a medial region of the top surface. The chambers may include a pumping liner disposed about an exterior surface of the substrate support. The chambers may include a liner disposed between the substrate support and the pumping liner. The liner may be spaced apart from the exterior surface to define a purge lumen between the liner and the substrate support. The chambers may include an edge ring seated on the peripheral edge region. The edge ring may extend beyond a peripheral edge of the substrate support and above a portion of the liner. A gap may be formed between a bottom surface of the edge ring and a top surface of the liner. The gap and the purge lumen may be fluidly coupled.
    Type: Application
    Filed: May 8, 2023
    Publication date: December 7, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Nitin Pathak, Tuan A. Nguyen, Amit Bansal, Badri N. Ramamurthi, Thomas Rubio, Juan Carlos Rocha-Alvarez
  • Patent number: 11830706
    Abstract: Embodiments of the present disclosure generally relate to a pedestal for increasing temperature uniformity in a substrate supported thereon. The pedestal comprises a body having a heater embedded therein. The body comprises a patterned surface that includes a first region having a first plurality of posts extending from a base surface of the body at a first height, and a second region surrounding the central region having a second plurality of posts extending from the base surface at a second height that is greater than the first height, wherein an upper surface of each of the first plurality of posts and the second plurality of posts are substantially coplanar and define a substrate receiving surface.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: November 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Venkata Sharat Chandra Parimi, Zubin Huang, Jian Li, Satish Radhakrishnan, Rui Cheng, Diwakar N. Kedlaya, Juan Carlos Rocha-Alvarez, Umesh M. Kelkar, Karthik Janakiraman, Sarah Michelle Bobek, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar, Byung Seok Kwon
  • Patent number: 11827980
    Abstract: Aspects of the present disclosure relate generally to isolator devices, components thereof, and methods associated therewith for substrate processing chambers. In one implementation, a substrate processing chamber includes an isolator ring disposed between a pedestal and a pumping liner. The isolator ring includes a first surface that faces the pedestal, the first surface being disposed at a gap from an outer circumferential surface of the pedestal. The isolator ring also includes a second surface that faces the pumping liner and a protrusion that protrudes from the first surface of the isolator ring and towards the outer circumferential surface of the pedestal. The protrusion defines a necked portion of the gap between the pedestal and the isolator ring.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: November 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Nitin Pathak, Amit Kumar Bansal, Tuan Anh Nguyen, Thomas Rubio, Badri N. Ramamurthi, Juan Carlos Rocha-Alvarez
  • Publication number: 20230317411
    Abstract: A radio frequency (RF) source may be used to generate a capacitively coupled plasma to perform a plasma-based process on a substrate in a plasma processing chamber. A controller may cause the RF source and a switching element to route an RF signal to electrodes in the pedestal that generate the plasma in the processing chamber as part of a recipe performed on a substrate during etch or deposition processes. Between processes, the controller may cause the same RF source to generate a second RF signal that is instead routed by the switching element to inductive coils to generate an inductively coupled plasma for a cleaning process to remove film deposits on the interior of the plasma processing chamber.
    Type: Application
    Filed: March 13, 2022
    Publication date: October 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Abdul Aziz Khaja, Juan Carlos Rocha-Alvarez
  • Patent number: 11776835
    Abstract: Exemplary semiconductor processing systems may include a processing chamber and an electrostatic chuck disposed at least partially within the processing chamber. The electrostatic chuck may include at least one electrode and a heater. A semiconductor processing system may include a power supply to provide a signal to the electrode to provide electrostatic force to secure a substrate to the electrostatic chuck. The system may also include a filter communicatively coupled between the power supply and the electrode. The filter is configured to remove or reduce noise introduced into the chucking signal by operating the heater while the electrostatic force on the substrate is maintained. The filter may include active circuitry, passive circuitry, or both, and may include an adjustment circuit to set the gain of the filter so that an output signal level from the filter corresponds to an input signal level for the filter.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: October 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Rana Howlader, Abhigyan Keshri, Sanjay G. Kamath, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez, Shailendra Srivastava, Kristopher R. Enslow, Xinhai Han, Deenesh Padhi, Edward P. Hammond
  • Publication number: 20230307228
    Abstract: Exemplary semiconductor processing chambers may include a gas delivery assembly. The chambers may include a substrate support. The chambers may include a faceplate positioned between the gas delivery assembly and the substrate support. The faceplate may be characterized by a first surface and a second surface. The second surface of the faceplate and the substrate support may at least partially define a processing region. The faceplate may define a first plurality of apertures and a second plurality of apertures. Each of the first plurality of apertures may include a first generally conical aperture profile that extends through the second surface that extends through the second surface. Each of the second plurality of apertures may include a second generally conical aperture profile that extends through the second surface. The second generally conical aperture profile may be different than the first generally conical aperture profile.
    Type: Application
    Filed: March 24, 2022
    Publication date: September 28, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Abdul Aziz Khaja, Juan Carlos Rocha-Alvarez
  • Patent number: 11699602
    Abstract: Exemplary substrate support assemblies may include a platen characterized by a first surface configured to support a semiconductor substrate. The assemblies may include a first stem section coupled with a second surface of the platen opposite the first surface of the platen. The assemblies may include a second stem section coupled with the first stem section. The second stem section may include a housing and a rod holder disposed within the housing. The second stem section may include a connector seated within the rod holder at a first end of the connector. The second stem section may include a heater rod disposed within the first end of the connector and a heater extension rod coupled with the connector at a second end of the connector. The second stem section may include an RF rod and an RF strap coupling the RF rod with an RF extension rod.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jian Li, Edward P. Hammond, Viren Kalsekar, Vidyadharan Srinivasa Murthy Bangalore, Juan Carlos Rocha-Alvarez
  • Publication number: 20230207371
    Abstract: Exemplary support assemblies may include an electrostatic chuck body defining a substrate support surface. The substrate support assemblies may include a support stem coupled with the electrostatic chuck body. The substrate support assemblies may include a heater embedded within the electrostatic chuck body. The substrate support assemblies may include a first bipolar electrode embedded within the electrostatic chuck body between the heater and the substrate support surface. The first bipolar electrode may include at least two separated mesh sections, with each mesh section characterized by a circular sector shape. The substrate support assemblies may include a second bipolar electrode embedded within the electrostatic chuck body between the heater and the substrate support surface. The second bipolar electrode may include a continuous mesh extending through the at least two separated mesh sections of the first bipolar electrode.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 29, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Jian LI, Zheng J. YE, Dmitry A. DZILNO, Juan Carlos ROCHA-ALVAREZ
  • Publication number: 20230207372
    Abstract: A chucking system reduces differences in chucking forces that are applied by two electrodes of an electrostatic chuck, to a substrate disposed atop the chuck. Initial chucking voltages are applied to each of two electrodes, and an initial current provided to at least a first electrode of the two electrodes is measured. A process is initiated that affects a DC voltage of the substrate, then a modified current provided to at least the first electrode is measured. A modified chucking voltage for a selected one of the two electrodes is determined that will reduce chucking force imbalance across the substrate based at least on the initial current and the modified current. The modified chucking voltage is then provided to the selected one of the two electrodes.
    Type: Application
    Filed: February 28, 2023
    Publication date: June 29, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Jian Li, Juan Carlos Rocha-Alvarez, Dmitry A. Dzilno
  • Publication number: 20230193466
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward W. BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 11643725
    Abstract: Exemplary semiconductor processing chambers may include a substrate support including a top surface. A peripheral edge region of the top surface may be recessed relative to a medial region of the top surface. The chambers may include a pumping liner disposed about an exterior surface of the substrate support. The chambers may include a liner disposed between the substrate support and the pumping liner. The liner may be spaced apart from the exterior surface to define a purge lumen between the liner and the substrate support. The chambers may include an edge ring seated on the peripheral edge region. The edge ring may extend beyond a peripheral edge of the substrate support and above a portion of the liner. A gap may be formed between a bottom surface of the edge ring and a top surface of the liner. The gap and the purge lumen may be fluidly coupled.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: May 9, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Nitin Pathak, Tuan A. Nguyen, Amit Bansal, Badri N. Ramamurthi, Thomas Rubio, Juan Carlos Rocha-Alvarez
  • Publication number: 20230123089
    Abstract: A faceplate for a substrate process chamber comprises a first and second surface. The second surface is shaped such that the second surface includes a peak and a distance between the first and second surface varies across the width of the faceplate. The second surface of the faceplate is exposed to a processing volume of the process chamber. Further, the faceplate may be part of a lid assembly for the process chamber. The lid assembly may include a blocker plate facing the first surface of the faceplate. A distance between the blocker plate and the first surface is constant.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Inventors: Shailendra SRIVASTAVA, Sai Susmita ADDEPALLI, Nikhil Sudhindrarao JORAPUR, Daemian Raj Benjamin RAJ, Amit Kumar BANSAL, Juan Carlos ROCHA-ALVAREZ, Gregory Eugene CHICHKANOFF, Xinhai HAN, Masaki OGATA, Kristopher ENSLOW, Wenjiao WANG