Patents by Inventor Juan Esteban Tapiero Bernal

Juan Esteban Tapiero Bernal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11927357
    Abstract: A system includes a plurality of thermostats corresponding to a plurality of HVAC systems that serve a plurality of spaces and a computing system communicable with the plurality of thermostats via a network. The computing system is configured to, for each space of the plurality of spaces, obtain a set of training data relating to thermal behavior of the space, identify a model of thermal behavior of the space based on the set of training data, perform a model predictive control process using the model of thermal behavior of the space to obtain a temperature setpoint for the space, and provide the temperature setpoint to the thermostat corresponding to the HVAC system serving the space. The plurality of thermostats are configured to control the plurality of HVAC systems in accordance with the temperature setpoints.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: March 12, 2024
    Assignee: Johnson Controls Tyco IP Holdings LLP
    Inventors: Kerry M. Bell, Bridget E. Kapler, Alan S. Schwegler, Leyla Mousavi, Kierstyn R. Robbins, Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. ElBsat, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff
  • Publication number: 20230228438
    Abstract: A thermostat for a building zone includes at least one of a model predictive controller and an equipment controller. The model predictive controller is configured to obtain a cost function that accounts for a cost of operating HVAC equipment during each of a plurality of time steps, use a predictive model to predict a temperature of the building zone during each of the plurality of time steps, and generate temperature setpoints for the building zone for each of the plurality of time steps by optimizing the cost function subject to a constraint on the predicted temperature. The equipment controller is configured to receive the temperature setpoints generated by the model predictive controller and drive the temperature of the building zone toward the temperature setpoints during each of the plurality of time steps by operating the HVAC equipment to provide heating or cooling to the building zone.
    Type: Application
    Filed: March 24, 2023
    Publication date: July 20, 2023
    Applicant: Johnson Controls Tyco IP Holdings LLP
    Inventors: Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. ELBSAT, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff
  • Patent number: 11644207
    Abstract: A thermostat for a building zone includes at least one of a model predictive controller and an equipment controller. The model predictive controller is configured to obtain a cost function that accounts for a cost of operating HVAC equipment during each of a plurality of time steps, use a predictive model to predict a temperature of the building zone during each of the plurality of time steps, and generate temperature setpoints for the building zone for each of the plurality of time steps by optimizing the cost function subject to a constraint on the predicted temperature. The equipment controller is configured to receive the temperature setpoints generated by the model predictive controller and drive the temperature of the building zone toward the temperature setpoints during each of the plurality of time steps by operating the HVAC equipment to provide heating or cooling to the building zone.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: May 9, 2023
    Assignee: Johnson Controls Tyco IP Holdings LLP
    Inventors: Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. Elbsat, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff
  • Publication number: 20220205668
    Abstract: A system includes a plurality of thermostats corresponding to a plurality of HVAC systems that serve a plurality of spaces and a computing system communicable with the plurality of thermostats via a network. The computing system is configured to, for each space of the plurality of spaces, obtain a set of training data relating to thermal behavior of the space, identify a model of thermal behavior of the space based on the set of training data, perform a model predictive control process using the model of thermal behavior of the space to obtain a temperature setpoint for the space, and provide the temperature setpoint to the thermostat corresponding to the HVAC system serving the space. The plurality of thermostats are configured to control the plurality of HVAC systems in accordance with the temperature setpoints.
    Type: Application
    Filed: March 8, 2022
    Publication date: June 30, 2022
    Applicant: Johnson Controls Tyco IP Holdings LLP
    Inventors: Kerry M. Bell, Bridget E. Kapler, Alan S. Schwegler, Leyla Mousavi, Kierstyn R. Robbins, Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. ElBsat, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff
  • Patent number: 11274849
    Abstract: A system includes a plurality of thermostats corresponding to a plurality of HVAC systems that serve a plurality of spaces and a computing system communicable with the plurality of thermostats via a network. The computing system is configured to, for each space of the plurality of spaces, obtain a set of training data relating to thermal behavior of the space, identify a model of thermal behavior of the space based on the set of training data, perform a model predictive control process using the model of thermal behavior of the space to obtain a temperature setpoint for the space, and provide the temperature setpoint to the thermostat corresponding to the HVAC system serving the space. The plurality of thermostats are configured to control the plurality of HVAC systems in accordance with the temperature setpoints.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: March 15, 2022
    Assignee: Johnson Controls Tyco IP Holdings LLP
    Inventors: Kerry M. Bell, Bridget E. Kapler, Alan S. Schwegler, Leyla Mousavi, Kierstyn R. Robbins, Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. ElBsat, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff
  • Patent number: 11098921
    Abstract: An HVAC system for automatically adjusting setpoint boundaries of a space includes building equipment configured to provide heating or cooling to the space to affect an environmental condition of the space and a controller. The controller obtains occupant setpoint adjustment data indicating occupant setpoint increases or occupant setpoint decreases at multiple times during a time interval and partitions the occupant setpoint adjustment data into time period bins based on the multiple times associated with the occupant setpoint adjustment data, each of the time period bins containing occupant setpoint adjustment data characterized by a common time attribute. The controller determines a number of occupant setpoint increases and a number of occupant setpoint decreases indicated by the occupant setpoint adjustment data within each time period bin and adjusts a setpoint boundary of the space based on the number of occupant setpoint increases or the number of occupant setpoint decreases.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: August 24, 2021
    Assignee: Johnson Controls Tyco IP Holdings LLP
    Inventors: Matthew J. Ellis, John H. Burroughs, Juan Esteban Tapiero Bernal, Anas W. I. Alanqar
  • Publication number: 20210018211
    Abstract: An HVAC system for automatically adjusting setpoint boundaries of a space includes building equipment configured to provide heating or cooling to the space to affect an environmental condition of the space and a controller. The controller obtains occupant setpoint adjustment data indicating occupant setpoint increases or occupant setpoint decreases at multiple times during a time interval and partitions the occupant setpoint adjustment data into time period bins based on the multiple times associated with the occupant setpoint adjustment data, each of the time period bins containing occupant setpoint adjustment data characterized by a common time attribute. The controller determines a number of occupant setpoint increases and a number of occupant setpoint decreases indicated by the occupant setpoint adjustment data within each time period bin and adjusts a setpoint boundary of the space based on the number of occupant setpoint increases or the number of occupant setpoint decreases.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Inventors: Matthew J. Ellis, John H. Burroughs, Juan Esteban Tapiero Bernal, Anas W. I. Alanqar
  • Patent number: 10718542
    Abstract: A building management system includes a controller configured to control building equipment by providing a control input to the building equipment for each of the plurality of time steps and generate a set of training data for a system model for the building. The training data includes input training data and output training data for each of the plurality of time steps. The controller is further configured to perform a system identification process to identify parameters of the system model. The system identification process includes predicting, for each time step, a predicted value for one or more of the output variables for each of a plurality of subsequent time steps, generating a prediction error function by comparing the output training data to the predicted values, and optimizing the prediction error function to determine values for the parameters of the system model that minimize the prediction error function.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: July 21, 2020
    Assignee: Johnson Controls Technology Company
    Inventors: Anas W. I. Alanqar, Matthew J. Ellis, Michael J. Wenzel, Juan Esteban Tapiero Bernal
  • Publication number: 20200218208
    Abstract: A building management system includes building equipment operable generate training data relating to behavior of a building system and a controller configured to perform a system identification process that includes generating a prediction error function based on the training data and a system model, generating initial guesses of one or more parameters of the system model, running an optimization problem of the prediction error function for a first group of iterations, discarding, after the first group of iterations, a portion of the initial guesses based on one or more criteria and ranking a remaining portion of the initial guesses, running the optimization problem of the prediction error function for a top-ranked initial guess of the remaining portion to local optimality to identify a first set of values of the one or more parameters, and identifying the one or more parameters as having the first set of values.
    Type: Application
    Filed: January 4, 2019
    Publication date: July 9, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: ANAS W. I. ALANQAR, MATTHEW J. ELLIS, MICHAEL J. WENZEL, JUAN ESTEBAN TAPIERO BERNAL
  • Patent number: 10684598
    Abstract: A building management system includes building equipment operable generate training data relating to behavior of a building system and a controller configured to perform a system identification process that includes generating a prediction error function based on the training data and a system model, generating initial guesses of one or more parameters of the system model, running an optimization problem of the prediction error function for a first group of iterations, discarding, after the first group of iterations, a portion of the initial guesses based on one or more criteria and ranking a remaining portion of the initial guesses, running the optimization problem of the prediction error function for a top-ranked initial guess of the remaining portion to local optimality to identify a first set of values of the one or more parameters, and identifying the one or more parameters as having the first set of values.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: June 16, 2020
    Assignee: Johnson Controls Technology Company
    Inventors: Anas W. I. Alanqar, Matthew J. Ellis, Michael J. Wenzel, Juan Esteban Tapiero Bernal
  • Patent number: 10673380
    Abstract: An energy storage system includes a photovoltaic energy field, a stationary energy storage device, an energy converter, and a controller. The photovoltaic energy field converts solar energy into electrical energy and charges the stationary energy storage device with the electrical energy. The energy converter converts the electrical energy stored in the stationary energy storage device into AC power at a discharge rate and supplies a campus with the AC power at the discharge rate. The controller generates a cost function of the energy consumption of the campus across a time horizon which relates a cost to operate the campus to the discharge rate of the AC power supplied by the stationary energy storage device. The controller applies constraints to the cost function, determines a minimizing solution to the cost function which satisfies the constraints, and controls the energy converter.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 2, 2020
    Assignee: Johnson Controls Technology Company
    Inventors: Michael J. Wenzel, Kirk H. Drees, John I. Ruiz, Matthew J. Ellis, Mohammad N. ElBsat, John H. Burroughs, Juan Esteban Tapiero Bernal
  • Publication number: 20200106385
    Abstract: An energy storage system includes a photovoltaic energy field, a stationary energy storage device, an energy converter, and a controller. The photovoltaic energy field converts solar energy into electrical energy and charges the stationary energy storage device with the electrical energy. The energy converter converts the electrical energy stored in the stationary energy storage device into AC power at a discharge rate and supplies a campus with the AC power at the discharge rate. The controller generates a cost function of the energy consumption of the campus across a time horizon which relates a cost to operate the campus to the discharge rate of the AC power supplied by the stationary energy storage device. The controller applies constraints to the cost function, determines a minimizing solution to the cost function which satisfies the constraints, and controls the energy converter.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Michael J. Wenzel, Kirk H. Drees, John I. Ruiz, Matthew J. Ellis, Mohammad N. ElBsat, John H. Burroughs, Juan Esteban Tapiero Bernal
  • Publication number: 20200041158
    Abstract: A thermostat for a building zone includes at least one of a model predictive controller and an equipment controller. The model predictive controller is configured to obtain a cost function that accounts for a cost of operating HVAC equipment during each of a plurality of time steps, use a predictive model to predict a temperature of the building zone during each of the plurality of time steps, and generate temperature setpoints for the building zone for each of the plurality of time steps by optimizing the cost function subject to a constraint on the predicted temperature. The equipment controller is configured to receive the temperature setpoints generated by the model predictive controller and drive the temperature of the building zone toward the temperature setpoints during each of the plurality of time steps by operating the HVAC equipment to provide heating or cooling to the building zone.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. ELBSAT, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff
  • Publication number: 20200025402
    Abstract: A system includes a plurality of thermostats corresponding to a plurality of HVAC systems that serve a plurality of spaces and a computing system communicable with the plurality of thermostats via a network. The computing system is configured to, for each space of the plurality of spaces, obtain a set of training data relating to thermal behavior of the space, identify a model of thermal behavior of the space based on the set of training data, perform a model predictive control process using the model of thermal behavior of the space to obtain a temperature setpoint for the space, and provide the temperature setpoint to the thermostat corresponding to the HVAC system serving the space. The plurality of thermostats are configured to control the plurality of HVAC systems in accordance with the temperature setpoints.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: Kerry M. Bell, Bridget E. Kapler, Alan S. Schwegler, Leyla Mousavi, Kierstyn R. Robbins, Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. ElBsat, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff
  • Patent number: 10495337
    Abstract: A thermostat for a building zone includes at least one of a model predictive controller and an equipment controller. The model predictive controller is configured to obtain a cost function that accounts for a cost of operating HVAC equipment during each of a plurality of time steps, use a predictive model to predict a temperature of the building zone during each of the plurality of time steps, and generate temperature setpoints for the building zone for each of the plurality of time steps by optimizing the cost function subject to a constraint on the predicted temperature. The equipment controller is configured to receive the temperature setpoints generated by the model predictive controller and drive the temperature of the building zone toward the temperature setpoints during each of the plurality of time steps by operating the HVAC equipment to provide heating or cooling to the building zone.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: December 3, 2019
    Assignee: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. ElBsat, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff
  • Publication number: 20190316802
    Abstract: A building management system includes a controller configured to control building equipment by providing a control input to the building equipment for each of the plurality of time steps and generate a set of training data for a system model for the building. The training data includes input training data and output training data for each of the plurality of time steps. The controller is further configured to perform a system identification process to identify parameters of the system model. The system identification process includes predicting, for each time step, a predicted value for one or more of the output variables for each of a plurality of subsequent time steps, generating a prediction error function by comparing the output training data to the predicted values, and optimizing the prediction error function to determine values for the parameters of the system model that minimize the prediction error function.
    Type: Application
    Filed: April 13, 2018
    Publication date: October 17, 2019
    Applicant: Johnson Controls Technology Company
    Inventors: Anas W. I. Alanqar, Matthew J. Ellis, Michael J. Wenzel, Juan Esteban Tapiero Bernal
  • Publication number: 20190078801
    Abstract: A thermostat for a building zone includes at least one of a model predictive controller and an equipment controller. The model predictive controller is configured to obtain a cost function that accounts for a cost of operating HVAC equipment during each of a plurality of time steps, use a predictive model to predict a temperature of the building zone during each of the plurality of time steps, and generate temperature setpoints for the building zone for each of the plurality of time steps by optimizing the cost function subject to a constraint on the predicted temperature. The equipment controller is configured to receive the temperature setpoints generated by the model predictive controller and drive the temperature of the building zone toward the temperature setpoints during each of the plurality of time steps by operating the HVAC equipment to provide heating or cooling to the building zone.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 14, 2019
    Applicant: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. ElBsat, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff
  • Patent number: 10146237
    Abstract: A thermostat includes an equipment controller and a model predictive controller. The equipment controller is configured to drive the temperature of a building zone to an optimal temperature setpoint by operating HVAC equipment to provide heating or cooling to the building zone. The model predictive controller is configured to determine the optimal temperature setpoint by generating a cost function that accounts for a cost operating the HVAC equipment during each of a plurality of time steps in an optimization period, using a predictive model to predict the temperature of the building zone during each of the plurality of time steps, and optimizing the cost function subject to a constraint on the predicted temperature of the building zone to determine optimal temperature setpoints for each of the time steps.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: December 4, 2018
    Assignee: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. Elbsat, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff
  • Publication number: 20180313557
    Abstract: A thermostat includes an equipment controller and a model predictive controller. The equipment controller is configured to drive the temperature of a building zone to an optimal temperature setpoint by operating HVAC equipment to provide heating or cooling to the building zone. The model predictive controller is configured to determine the optimal temperature setpoint by generating a cost function that accounts for a cost operating the HVAC equipment during each of a plurality of time steps in an optimization period, using a predictive model to predict the temperature of the building zone during each of the plurality of time steps, and optimizing the cost function subject to a constraint on the predicted temperature of the building zone to determine optimal temperature setpoints for each of the time steps.
    Type: Application
    Filed: June 16, 2017
    Publication date: November 1, 2018
    Applicant: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Matthew J. Ellis, Michael J. Wenzel, Mohammad N. EIBsat, Juan Esteban Tapiero Bernal, Brennan H. Fentzlaff