Patents by Inventor Juanyu YANG

Juanyu YANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230321632
    Abstract: The present disclosure relates to a cerium-zirconium-based composite oxide having gradient element distribution and a preparation method therefor. According to the present disclosure, the cerium-zirconium-based composite oxide having gradient element distribution is prepared by a step-by-step precipitation method. First, a zirconium-rich component is precipitated to form a crystal structure and a crystal grain stack structure which have high thermal stability, slow down the segregation of zirconium on a surface after high-temperature treatment, and reduce element migration among crystal grains; second, a cerium-rich component is precipitated to improve the cerium content of the surface layers of the crystal grains, improve the utilization rate of the cerium element, and improve the oxygen storage amount and the oxygen storage rate.
    Type: Application
    Filed: August 27, 2021
    Publication date: October 12, 2023
    Inventors: Xiaowei HUANG, Yongke HOU, Zheng ZHAO, Yongqi ZHANG, Juanyu YANG, Meisheng CUI, Zhizhe ZHAI, Yang XU, Zongyu FENG, Shilei CHEN
  • Publication number: 20230321631
    Abstract: The present disclosure provides a cerium-zirconium-based composite oxide with a core-shell structure and a preparation method thereof, a catalyst system using the cerium-zirconium-based composite oxide, a catalytic converter for purifying tail gas by using the catalyst system, and application of the catalyst system or the catalytic converter in motor vehicle exhaust purification, industrial waste gas treatment or catalytic combustion. In the present invention, the cerium-zirconium-based composite oxide with a core-shell structure oxygen storage material is prepared by a step-by-step precipitation method. On the one hand, yttrium and a part of zirconium and cerium are precipitated on a cerium-zirconium surface, where the post-precipitation of yttrium is to segregate yttrium ions (Y3+) on a grain boundary surface, thus reducing lattice surface energy, pinning the grain boundary surface, making the migration of the grain boundary surface difficult, controlling the growth of grains.
    Type: Application
    Filed: August 27, 2021
    Publication date: October 12, 2023
    Inventors: Yongqi ZHANG, Zheng ZHAO, Xiaowei HUANG, Yongke HOU, Meisheng CUI, Zhizhe ZHAI, Zongyu FENG, Juanyu YANG, Yang XU
  • Patent number: 9666863
    Abstract: The invention relates to a nano silicon-carbon composite negative material for lithium ion batteries and a preparation method thereof. A porous electrode composed of silica and carbon is taken as a raw material, and a nano silicon-carbon composite material of carbon-loaded nano silicon is formed by a molten salt electrolysis method in a manner of silica in-situ electrochemical reduction. Silicon and carbon of the material are connected by nano silicon carbide, and are metallurgical-grade combination, so that the electrochemical cycle stability of the nano silicon-carbon composite material is improved.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: May 30, 2017
    Assignee: CHINA AUTOMOTIVE BATTERY RESEARCH INSTITUTE CO., LTD.
    Inventors: Shigang Lu, Juanyu Yang, Xingming Wang, Haiyang Ding, Zhefeng Gao
  • Publication number: 20140302396
    Abstract: The invention relates to a nano silicon-carbon composite negative material for lithium ion batteries and a preparation method thereof. A porous electrode composed of silica and carbon is taken as a raw material, and a nano silicon-carbon composite material of carbon-loaded nano silicon is formed by a molten salt electrolysis method in a manner of silica in-situ electrochemical reduction. Silicon and carbon of the material are connected by nano silicon carbide, and are metallurgical-grade combination, so that the electrochemical cycle stability of the nano silicon-carbon composite material is improved.
    Type: Application
    Filed: November 9, 2012
    Publication date: October 9, 2014
    Inventors: Shigang Lu, Juanyu Yang, Xingming Wang, Haiyang Ding, Zhefeng Gao
  • Patent number: 8771498
    Abstract: An electrochemical method for producing Si nanopowder, Si nanowires and/or Si nanotubes directly from compound SiX or a mixture containing a silicon compound SiX, the method comprises: providing an electrolysis cell having a cathode, an anode and an electrolyte, using the compound SiX or the mixture containing compound SiX as a cathode and immersing the cathode in an electrolyte comprising a metal compound molten salt, applying a potential between the cathode and the anode in the electrolysis cell, and forming one or more of Si nanopowder, Si nanowires and Si nanotubes on the cathode electrode. The method has advantages of: 1) shorter production processing, 2) inexpensive equipment, 3) convenient operation, 4) reduction of contaminate, 5) easily available feed materials, and 6) easy to achieve continuous production. This is a new field of using electrochemical method for producing one-dimensional Si nano material, and a new method of producing Si nanopowder, Si nanowires and Si nanotubes.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: July 8, 2014
    Assignee: General Research Institute for Nonferrous Metals
    Inventors: Shigang Lu, Juanyu Yang, Xiangjun Zhang, Surong Kan
  • Publication number: 20110203938
    Abstract: An electrochemical method for producing Si nanopowder, Si nanowires and/or Si nanotubes directly from compound SiX or a mixture containing a silicon compound SiX, the method comprises: providing an electrolysis cell having a cathode, an anode and an electrolyte, using the compound SiX or the mixture containing compound SiX as a cathode and immersing the cathode in an electrolyte comprising a metal compound molten salt, applying a potential between the cathode and the anode in the electrolysis cell, and forming one or more of Si nanopowder, Si nanowires and Si nanotubes on the cathode electrode. The method has advantages of: 1) shorter production processing, 2) inexpensive equipment, 3) convenient operation, 4) reduction of contaminate, 5) easily available feed materials, and 6) easy to achieve continuous production. This is a new field of using electrochemical method for producing one-dimensional Si nano material, and a new method of producing Si nanopowder, Si nanowires and Si nanotubes.
    Type: Application
    Filed: May 2, 2011
    Publication date: August 25, 2011
    Applicant: General Research Institute for Nonferrous Metals
    Inventors: Shigang LU, Juanyu YANG, Xiangjun ZHANG, Surong KAN