Patents by Inventor Judit E. Puskas

Judit E. Puskas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10314945
    Abstract: A polymer composite includes a functionalized polyisobutylene and an additional polyisobutylene-containing material. The functionalized polyisobutylene includes an ?-lipoic acid functional group. A method for producing the polymer composite includes providing the additional polyisobutylene-containing material as a substrate having a surface, and coating the surface of the substrate with the functionalized polyisobutylene. A method for producing a coated substrate including the polymer composite includes providing a polymer combination including the functionalized polyisobutylene and the additional polyisobutylene-containing material, and depositing the polymer combination on to a substrate to thereby form the coated substrate.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: June 11, 2019
    Assignee: THE UNIVERSITY OF AKRON
    Inventors: Judit E. Puskas, Alejandra Alvarez Albarran, Emily Q. Rosenthal-Kim
  • Patent number: 9907815
    Abstract: A method for the polymerization of ?-lipoic acid and ?-lipoic acid derivatives includes preparing an ?-lipoic formulation, exposing the ?-lipoic formulation to an aqueous phase and a gaseous phase at a gas/water interface, and allowing the ?-lipoic formulation to polymerize at the gas/water interface to form a poly(?-lipoic acid) polymer. The ?-lipoic formulation can be an ?-lipoic solution of an ?-lipoic solute and an organic solvent miscible with water, and can also be an ?-lipoic acid or oligomer or polymer thereof in liquid (typically melt) form.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: March 6, 2018
    Assignee: The University of Akron
    Inventors: Judit E. Puskas, Emily Q. Rosenthal-Kim
  • Patent number: 9885070
    Abstract: The invention relates to functionalized, telechelic polymers synthesized by enzymatic catalysis and methods, and the functionalization of polymers via Michael addition with a lipase catalyst, and the crosslinking of mono- or difunctional (telechelic) polymers made by enzymatic catalysis, such as by using multifunctional coupling agents and enzyme catalysts. Quantitative transesterification of vinyl methacrylate with poly(ethylene glycol), poly(isobutylene) and poly(dimethylsiloxane) was achieved using Candida antarctica lipase B. In addition, methacrylate-functionalized poly(ethylene glycol) monomethyl ether has been successfully coupled to aminoethoxy poly(ethylene glycol) monomethyl ether via Michael addition using Candida antarctica lipase B. Amine-functionalized poly(ethylene glycol)s have also been used for the preparation of poly(ethylene glycol)-based dendrimers and gels through Michael addition of the polymer onto triacryloyl hexahydro-triazine using the same enzyme.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: February 6, 2018
    Assignee: The University of Akron
    Inventors: Judit E Puskas, Mustafa Yasin Sen
  • Patent number: 9790301
    Abstract: Copolymers having a substantially heterogeneous composition distribution and strong UV absorption are the direct reaction product of an isoolefin and at least one terpene having the molecular formulae of (C5H8)n where n is equal to or greater than two, and optionally additional monomers. More specifically, the invention relates to copolymers of isobutylene and alloocimene that exhibit thermoplastic elastomeric properties and exhibit strong filler interaction. The present invention also relates to methods for producing copolymers of at least one isoolefin and at least one terepene by a two-phase living polymerization that produces a substantially linear triblock and multiblock copolymer having substantially heterogeneous distribution of the isoolefin and terpene units.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: October 17, 2017
    Assignee: The University of Akron
    Inventor: Judit E. Puskas
  • Publication number: 20170216492
    Abstract: A polymer composite includes a functionalized polyisobutylene and an additional polyisobutylene-containing material. One or more methods of making the polymer composite are also provided. Where the functionalized polyisobutylene is applied to a polyisobutylene-containing material, the method of applying the functionalized polyisobutylene compound can be described as a modular method.
    Type: Application
    Filed: April 18, 2017
    Publication date: August 3, 2017
    Inventors: Judit E. Puskas, Alejandra Alvarez Albarran, Emily Q. Rosenthal-Kim
  • Publication number: 20160229999
    Abstract: A polymer composite includes a functionalized polyisobutylene and an additional polyisobutylene-containing material. One or more methods of making the polymer composite are also provided. Where the functionalized polyisobutylene is applied to a polyisobutylene-containing material, the method of applying the functionalized polyisobutylene compound can be described as a modular method.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 11, 2016
    Inventors: Judit E. Puskas, Alejandra Alvarez Albarran, Emily Q. Rosenthal-Kim
  • Patent number: 9193680
    Abstract: High molecular weight disulfide polymers are synthesized in aqueous media by exposing dithiol compounds to a mild oxidizing environment in the presence of a tertiary amine catalyst. The unique oxidizing system polymerizes monomers through the formation of sulfur-sulfur bonds between dithiol compounds. The same oxidizing system may be used to make disulfide-crosslinked gels from compounds containing multiple thiol groups. The oxidizing system is comprised of oxygen at atmospheric concentration and dilute hydrogen peroxide. A filler such as carbon black may be incorporated into the polymer or cross-linked gel during polymerization. A polydisulfide polymer is provided having a weight average molecular weight of greater than about 100,000 g/mol and a polydispersity index of about 2 or less. A tetrathiol composition results from a reaction of a diacrylate with a trithiol.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: November 24, 2015
    Assignee: The University of Akron
    Inventors: Judit E. Puskas, Emily Q. Rosenthall
  • Publication number: 20150274865
    Abstract: Copolymers having a substantially heterogeneous composition distribution and strong UV absorption are the direct reaction product of an isoolefin and at least one terpene having the molecular formulae of (C5H8)n where n is equal to or greater than two, and optionally additional monomers. More specifically, the invention relates to copolymers of isobutylene and alloocimene that exhibit thermoplastic elastomeric properties and exhibit strong filler interaction. The present invention also relates to methods for producing copolymers of at least one isoolefin and at least one terepene by a two-phase living polymerization that produces a substantially linear triblock and multiblock copolymer having substantially heterogeneous distribution of the isoolefin and terpene units.
    Type: Application
    Filed: May 1, 2015
    Publication date: October 1, 2015
    Inventor: Judit E. Puskas
  • Publication number: 20150139933
    Abstract: A method for the polymerization of ?-lipoic acid and ?-lipoic acid derivatives includes preparing an ?-lipoic formulation, exposing the ?-lipoic formulation to an aqueous phase and a gaseous phase at a gas/water interface, and allowing the ?-lipoic formulation to polymerize at the gas/water interface to form a poly(?-lipoic acid) polymer. The ?-lipoic formulation can be an ?-lipoic solution of an ?-lipoic solute and an organic solvent miscible with water, and can also be an ?-lipoic acid or oligomer or polymer thereof in liquid (typically melt) form.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 21, 2015
    Inventors: Judit E. Puskas, Emily Q. Rosenthal-Kim
  • Publication number: 20140377481
    Abstract: Copolymers having a substantially heterogeneous composition distribution and strong UV absorption comprise the direct reaction product of an isoolefin and at least one terpene having the molecular formulae of (C5H8)n where n is equal to or greater than two, and optionally additional monomers. More specifically, the invention relates to copolymers of isobutylene and alloocimene that exhibit thermoplastic elastomeric properties and exhibit strong filler interaction. The present invention also relates to methods for producing copolymers of at least one isoolefin and at least one terepene by a two-phase living polymerization that produces a substantially linear diblock, triblock, and multiblock copolymer having substantially heterogeneous distribution of the isoolefin and terpene units.
    Type: Application
    Filed: January 17, 2013
    Publication date: December 25, 2014
    Applicant: UNIVERSITY OF AKRON
    Inventors: Judit E. Puskas, Gabor Kaszas
  • Publication number: 20140273111
    Abstract: The invention relates to functionalized, telechelic polymers synthesized by enzymatic catalysis and methods, and the functionalization of polymers via Michael addition with a lipase catalyst, and the crosslinking of mono- or difunctional (telechelic) polymers made by enzymatic catalysis, such as by using multifunctional coupling agents and enzyme catalysts. Quantitative transesterification of vinyl methacrylate with poly(ethylene glycol), poly(isobutylene) and poly(dimethylsiloxane) was achieved using Candida antarctica lipase B. In addition, methacrylate-functionalized poly(ethylene glycol) monomethyl ether has been successfully coupled to aminoethoxy poly(ethylene glycol) monomethyl ether via Michael addition using Candida antarctica lipase B. Amine-functionalized poly(ethylene glycol)s have also been used for the preparation of poly(ethylene glycol)-based dendrimers and gels through Michael addition of the polymer onto triacryloyl hexahydro-triazine using the same enzyme.
    Type: Application
    Filed: April 3, 2014
    Publication date: September 18, 2014
    Applicant: The University of Akron
    Inventors: Judit E. Puskas, Mustafa Yasin Sen
  • Patent number: 8748530
    Abstract: The present invention relates to arborescent polymers and to a process for making same. In one embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with a polymer or copolymer having a low glass transition temperature (Tg), and to a process for making such arborescent polymers. In another embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with less than about 5 weight percent end blocks derived from a polymer or copolymer having a high glass transition temperature (Tg), and to a process for making such arborescent polymers.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: June 10, 2014
    Assignees: The University of Akron, Lanxess, Inc.
    Inventors: Gabor Kaszas, Judit E. Puskas, Kevin Kulbaba
  • Patent number: 8710156
    Abstract: The invention relates to functionalized, telechelic polymers synthesized by enzymatic catalysis and methods, and the functionalization of polymers via Michael addition with a lipase catalyst, and the crosslinking of mono- or difunctional (telechelic) polymers made by enzymatic catalysis, such as by using multifunctional coupling agents and enzyme catalysts. Quantitative transesterification of vinyl methacrylate with poly(ethylene glycol), poly(isobutylene) and poly(dimethylsiloxane) was achieved using Candida antarctica lipase B. In addition, methacrylate-functionalized poly(ethylene glycol) monomethyl ether has been successfully coupled to aminoethoxy poly(ethylene glycol) monomethyl ether via Michael addition using Candida antarctica lipase B. Amine-functionalized poly(ethylene glycol)s have also been used for the preparation of poly(ethylene glycol)-based dendrimers and gels through Michael addition of the polymer onto triacryloyl hexahydro-triazine using the same enzyme.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: April 29, 2014
    Inventors: Judit E. Puskas, Mustafa Yasin Sen
  • Publication number: 20140066589
    Abstract: High molecular weight disulfide polymers are synthesized in aqueous media by exposing dithiol compounds to a mild oxidizing environment in the presence of a tertiary amine catalyst. The unique oxidizing system polymerizes monomers through the formation of sulfur-sulfur bonds between dithiol compounds. The same oxidizing system may be used to make disulfide-crosslinked gels from compounds containing multiple thiol groups. The oxidizing system is comprised of oxygen at atmospheric concentration and dilute hydrogen peroxide. A filler such as carbon black may be incorporated into the polymer or cross-linked gel during polymerization. A polydisulfide polymer is provided having a weight average molecular weight of greater than about 100,000 g/mol and a polydispersity index of about 2 or less. A tetrathiol composition results from a reaction of a diacrylate with a trithiol.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 6, 2014
    Applicant: The University of Akron
    Inventors: Judit E. Puskas, Emily Q. Rosenthall
  • Publication number: 20130303688
    Abstract: The present invention relates to arborescent polymers and to a process for making same. In one embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with a polymer or copolymer having a low glass transition temperature (Tg), and to a process for making such arborescent polymers. In another embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with less than about 5 weight percent end blocks derived from a polymer or copolymer having a high glass transition temperature (Tg), and to a process for making such arborescent polymers.
    Type: Application
    Filed: July 11, 2013
    Publication date: November 14, 2013
    Inventors: Gabor Kaszas, Judit E. Puskas, Kevin Kulbaba
  • Patent number: 8580917
    Abstract: The invention relates to block polymers, for example, arborescent copolymer compounds, and to methods of making and purifying such compounds. In one embodiment, the invention relates to arborescent polymer compounds that contain one or more styrene polymeric blocks in combination with one or more isobutylene polymeric blocks. In another embodiment, the invention relates to methods for purifying arborescent polymer compounds that contain at least one styrene polymeric block in combination with at least one isobutylene polymeric block.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: November 12, 2013
    Assignee: The University of Akron
    Inventor: Judit E Puskas
  • Publication number: 20130296496
    Abstract: The invention relates to block polymers, for example, arborescent copolymer compounds, and to methods of making and purifying such compounds. In one embodiment, the invention relates to arborescent polymer compounds that contain one or more styrene polymeric blocks in combination with one or more isobutylene polymeric blocks. In another embodiment, the invention relates to methods for purifying arborescent polymer compounds that contain at least one styrene polymeric block in combination with at least one isobutylene polymeric block.
    Type: Application
    Filed: July 3, 2013
    Publication date: November 7, 2013
    Inventor: Judit E. Puskas
  • Patent number: 8552143
    Abstract: High molecular weight disulfide polymers are synthesized in aqueous media by exposing dithiol compounds to a mild oxidizing environment in the presence of a tertiary amine catalyst. The unique oxidizing system polymerizes monomers through the formation of sulfur-sulfur bonds between dithiol compounds. The same oxidizing system may be used to make disulfide-crosslinked gels from compounds containing multiple thiol groups. The oxidizing system is comprised of oxygen at atmospheric concentration and dilute hydrogen peroxide. A filler such as carbon black may be incorporated into the polymer or cross-linked gel during polymerization. A polydisulfide polymer is provided having a weight average molecular weight of greater than about 100,000 g/mol and a polydispersity index of about 2 or less. A tetrathiol composition results from a reaction of a diacrylate with a trithiol.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: October 8, 2013
    Assignee: The University of Akron
    Inventors: Judit E. Puskas, Emily Q. Rosenthal
  • Patent number: 8383764
    Abstract: The invention relates to block polymers, for example, arborescent copolymer compounds, and to methods of making and purifying such compounds. In one embodiment, the invention relates to arborescent polymer compounds that contain one or more styrene polymeric blocks in combination with one or more isobutylene polymeric blocks. In another embodiment, the invention relates to methods for purifying arborescent polymer compounds that contain at least one styrene polymeric block in combination with at least one isobutylene polymeric block.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: February 26, 2013
    Assignee: The University of Akron
    Inventor: Judit E. Puskas
  • Publication number: 20130012661
    Abstract: The invention relates to block polymers, for example, arborescent copolymer compounds, and to methods of making and purifying such compounds. In one embodiment, the invention relates to arborescent polymer compounds that contain one or more styrene polymeric blocks in combination with one or more isobutylene polymeric blocks. In another embodiment, the invention relates to methods for purifying arborescent polymer compounds that contain at least one styrene polymeric block in combination with at least one isobutylene polymeric block.
    Type: Application
    Filed: March 15, 2012
    Publication date: January 10, 2013
    Applicant: LANXESS, INC.
    Inventor: Judit E. PUSKAS