Patents by Inventor Judy Huang

Judy Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030030057
    Abstract: The present invention generally provides a process for depositing silicon carbide using a silane-based material with certain process parameters that is useful for forming a suitable ARC for IC applications. The same material may also be used as a barrier layer and an etch stop, even in complex damascene structures and with high diffusion conductors such as copper as a conductive material. Under certain process parameters, a fixed thickness of the silicon carbide may be used on a variety of thicknesses of underlying layers. The thickness of the silicon carbide ARC is substantially independent of the thickness of the underlying layer for a given reflectivity, in contrast to the typical need for adjustments in the ARC thickness for each underlying layer thickness to obtain a given reflectivity.
    Type: Application
    Filed: December 23, 1998
    Publication date: February 13, 2003
    Inventors: CHRISTOPHER BENCHER, JOE FENG, MEI-YEE SHEK, CHRIS NGAI, JUDY HUANG
  • Publication number: 20030022509
    Abstract: The present invention provides an in situ plasma reducing process to reduce oxides or other contaminants, using a compound of nitrogen and hydrogen, typically ammonia, at relatively low temperatures prior to depositing a subsequent layer thereon. The adhesion characteristics of the layers are improved and oxygen presence is reduced compared to the typical physical sputter cleaning process of an oxide layer. This process may be particularly useful for the complex requirements of a dual damascene structure, especially with copper applications.
    Type: Application
    Filed: September 23, 2002
    Publication date: January 30, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Sudha Rathi, Ping Xu, Judy Huang
  • Patent number: 6451686
    Abstract: A method and apparatus for reducing oxide traps within a silicon oxide film by incorporating a selected level of fluorine in the silicon oxide film. The method includes the steps of distributing a fluorine source to a processing chamber at a selected rate with the rate being chosen according to the desired level of fluorine to be incorporated into the film, flowing a process gas including a silicon source, an oxygen source and the fluorine source into the processing chamber, and maintaining a deposition zone within the chamber at processing conditions suitable to deposit a silicon oxide film having the selected level of fluorine incorporated into the film over a substrate disposed in the chamber. In a preferred embodiment, the selected level of fluorine incorporated into the film is between 1×1020 atoms/cm3 and 1×1021 atoms/cm3. In another preferred embodiment the silicon oxide film is deposited as a first layer of a composite layer premetal dielectric film.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: September 17, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Chris Ngai, Joel Glenn, Mei Yee Shek, Judy Huang
  • Patent number: 6436843
    Abstract: In a method for applying a coating material on a substrate, a print head is disposed over a substrate. Drops of a coating material are controllably dispensed from the print head to form a wide area film on the substrate. A system for coating a wafer includes a housing, and a chuck for supporting the wafer and a print head are disposed in the housing. A source of a coating material is coupled to the print head. A digital signal processor provides control signals for controlling process parameters for dispensing drops of the coating material and for controlling the relative position of the print head and the chuck. The relative position of the print head and the chuck (and hence the wafer supported thereon) may be controlled by moving the print head by itself, by moving the chuck by itself, or by moving both the print head and the chuck.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: August 20, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Henner Meinhold, Fred J. Chetcuti, Judy Huang
  • Publication number: 20020081759
    Abstract: A method and apparatus for reducing trapped charges in a semiconductor device having a first layer and a second layer, said method comprising the steps of providing said first layer, flowing a deposition, a dilution and a conversion gas upon said first layer thereby forming a transition layer, phasing out said flow of conversion gas and forming said second layer upon said transition layer. The deposition gas, dilution gas and conversion gas are preferably trimethylsilane, helium and N2O respectively. The method is performed via chemical vapor deposition or plasma enhanced chemical vapor deposition. The apparatus has a first insulating layer, a transition layer disposed upon said first layer and a second insulating layer disposed upon said transition layer. The transition layer improves the adhesion between said first insulating layer and said second insulating layer. A reduction in the amount of electrical charges (i.e.
    Type: Application
    Filed: December 7, 1999
    Publication date: June 27, 2002
    Inventors: JUDY HUANG, CHRIS BENCHER, SUDHA RATHI
  • Patent number: 6395092
    Abstract: A silicon oxide film is deposited on a substrate by first introducing a process gas into a chamber. The process gas includes a gaseous source of silicon (such as silane), a gaseous source of fluorine (such as SiF4), a gaseous source of oxygen (such as nitrous oxide), and a gaseous source of nitrogen (such as N2). A plasma is formed from the process gas by applying a RF power component. Deposition is carried out at a rate of at least about 1.5 &mgr;m/min. The resulting FSG film is stable and has a low dielectric constant.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: May 28, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Dian Sugiarto, Judy Huang, David Cheung
  • Publication number: 20020054962
    Abstract: The present invention generally provides improved adhesion and oxidation resistance of carbon-containing layers without the need for an additional deposited layer. In one aspect, the invention treats an exposed surface of carbon-containing material, such as silicon carbide, with an inert gas plasma, such as a helium (He), argon (Ar), or other inert gas plasma, or an oxygen-containing plasma such as a nitrous oxide (N2O) plasma. Other carbon-containing materials can include organic polymeric materials, amorphous carbon, amorphous fluorocarbon, carbon containing oxides, and other carbon-containing materials. The plasma treatment is preferably performed in situ following the deposition of the layer to be treated. Preferably, the processing chamber in which in situ deposition and plasma treatment occurs is configured to deliver the same or similar precursors for the carbon-containing layer(s). However, the layer(s) can be deposited with different precursors.
    Type: Application
    Filed: June 18, 1999
    Publication date: May 9, 2002
    Inventor: JUDY HUANG
  • Patent number: 6358573
    Abstract: A substrate processing system that includes a ceramic substrate holder having an RF electrode embedded within the substrate holder and a gas inlet manifold spaced apart from the substrate holder. The gas inlet manifold supplies one or more process gases through multiple conical holes to a reaction zone of a substrate processing chamber within the processing system and also acts as a second RF electrode. Each conical hole has an outlet that opens into the reaction zone and an inlet spaced apart from the outlet that is smaller in diameter than said outlet. A mixed frequency RF power supply is connected to the substrate processing system with a high frequency RF power source connected to the gas inlet manifold electrode and a low frequency RF power source connected to the substrate holder electrode. An RF filter and matching network decouples the high frequency waveform from the low frequency waveform.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: March 19, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Sébastien Raoux, Mandar Mudholkar, William N. Taylor, Mark Fodor, Judy Huang, David Silvetti, David Cheung, Kevin Fairbairn
  • Publication number: 20010049181
    Abstract: The present invention provides an in situ plasma reducing process to reduce oxides or other contaminants, using a compound of nitrogen and hydrogen, typically ammonia, at relatively low temperatures prior to depositing a subsequent layer thereon. The adhesion characteristics of the layers are improved and oxygen presence is reduced compared to the typical physical sputter cleaning process of an oxide layer. This process may be particularly useful for the complex requirements of a dual damascene structure, especially with copper applications.
    Type: Application
    Filed: November 17, 1998
    Publication date: December 6, 2001
    Inventors: SUDHA RATHI, PING XU, JUDY HUANG
  • Patent number: 6098568
    Abstract: A substrate processing system that includes a ceramic substrate holder having an RF electrode embedded within the substrate holder and a gas inlet manifold spaced apart from the substrate holder. The gas inlet manifold supplies one or more process gases through multiple conical holes to a reaction zone of a substrate processing chamber within the processing system and also acts as a second RF electrode. Each conical hole has an outlet that opens into the reaction zone and an inlet spaced apart from the outlet that is smaller in diameter than said outlet. A mixed frequency RF power supply is connected to the substrate processing system with a high frequency RF power source connected to the gas inlet manifold electrode and a low frequency RF power source connected to the substrate holder electrode. An RF filter and matching network decouples the high frequency waveform from the low frequency waveform.
    Type: Grant
    Filed: December 1, 1997
    Date of Patent: August 8, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Sebastien Raoux, Mandar Mudholkar, William N. Taylor, Mark Fodor, Judy Huang, David Silvetti, David Cheung, Kevin Fairbairn
  • Patent number: 6077764
    Abstract: A silicon oxide film is deposited on a substrate by first introducing a process gas into a chamber. The process gas includes a gaseous source of silicon (such as silane), a gaseous source of fluorine (such as SiF.sub.4), a gaseous source of oxygen (such as nitrous oxide), and a gaseous source of nitrogen (such as N.sub.2). A plasma is formed from the process gas by applying a RF power component. Deposition is carried out at a rate of at least about 1.5 .mu.m/min. The resulting FSG film is stable and has a low dielectric constant.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: June 20, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Dian Sugiarto, Judy Huang, David Cheung